Citation: | ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122 |
[1] |
张克绪. 饱和砂土的液化应力条件[J]. 地震工程与工程振动, 1984, 4(1): 99-109.
ZHANG Kexu. Stress condition inducing liquefaction of saturated sand[J]. Earthquake Engineering and Engineering Vibration, 1984, 4(1): 99-109. (in Chinese)
|
[2] |
陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007.
CHEN Guoxing. Geotechnical Earthquake Engineering[M]. Beijing: Science Press, 2007. (in Chinese)
|
[3] |
SEED H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Journal of the Geotechnical Engineering Division, 1979, 105(2): 201-255. doi: 10.1061/AJGEB6.0000768
|
[4] |
张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. http://cge.nhri.cn/article/id/14487
ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese) http://cge.nhri.cn/article/id/14487
|
[5] |
张建民, 王刚. 砂土液化后大变形的机理[J]. 岩土工程学报, 2006, 28(7): 835-840. doi: 10.3321/j.issn:1000-4548.2006.07.006
ZHANG Jianmin, WANG Gang. Mechanism of large post-liquefaction deformation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 835-840. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.07.006
|
[6] |
刘汉龙, 周云东, 高玉峰. 砂土地震液化后大变形特性试验研究[J]. 岩土工程学报, 2002, 24(2): 142-146. doi: 10.3321/j.issn:1000-4548.2002.02.003
LIU Hanlong, ZHOU Yundong, GAO Yufeng. Study on the behavior of large ground displacement of sand due to seismic liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 142-146. (in Chinese) doi: 10.3321/j.issn:1000-4548.2002.02.003
|
[7] |
陈国兴, 刘雪珠. 循环荷载作用下南京片状细砂的不排水动力性态[J]. 岩土工程学报, 2009, 31(10): 1498-1504. doi: 10.3321/j.issn:1000-4548.2009.10.004
CHEN Guoxing, LIU Xuezhu. Undrained cyclic behaviors of Nanjing flake-shaped fine sand under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1498-1504. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.004
|
[8] |
许成顺, 高英, 杜修力, 等. 双向耦合剪切条件下饱和砂土动强度特性试验研究[J]. 岩土工程学报, 2014, 36(12): 2335-2340. doi: 10.11779/CJGE201412024
XU Chengshun, GAO Ying, DU Xiuli, et al. Dynamic strength of saturated sand under bi-directional cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2335-2340. (in Chinese) doi: 10.11779/CJGE201412024
|
[9] |
陈育民, 刘汉龙, 周云东. 液化及液化后砂土的流动特性分析[J]. 岩土工程学报, 2006, 28(9): 1139-1143. doi: 10.3321/j.issn:1000-4548.2006.09.017
CHEN Yumin, LIU Hanlong, ZHOU Yundong. Analysis on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1139-1143. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.09.017
|
[10] |
庄海洋, 胡中华, 王瑞, 等. 饱和南京细砂初始液化后特大流动变形特性试验研究[J]. 岩土工程学报, 2016, 38(12): 2164-2174. doi: 10.11779/CJGE201612004
ZHUANG Haiyang, HU Zhonghua, WANG Rui, et al. Cyclic torsional shear loading tests on the extremely large post-liquefaction flow deformation of saturated Nanjing sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2164-2174. (in Chinese) doi: 10.11779/CJGE201612004
|
[11] |
庄海洋, 胡中华, 王瑞, 等. 南京饱和细砂液化后大变形条件下动剪切模量衰减特征研究[J]. 岩土力学, 2017, 38(12): 3445-3452, 3461.
ZHUANG Haiyang, HU Zhonghua, WANG Rui, et al. Shear moduli reduction of saturated Nanjing sand under large deformation induced by liquefaction[J]. Rock and Soil Mechanics, 2017, 38(12): 3445-3452, 3461. (in Chinese)
|
[12] |
ZHOU X Z, STUEDLEIN A W, CHEN Y M, et al. Cyclic response of loose anisotropically consolidated calcareous sand under progressive wave-induced elliptical stress paths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020143. doi: 10.1061/(ASCE)GT.1943-5606.0002422
|
[13] |
CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317-331. doi: 10.1680/jgeot.18.P.180
|
[14] |
SEED H B, MARTIN P P, LYSMER J. Pore-water pressure changes during soil liquefaction[J]. Journal of the Geotechnical Engineering Division, 1976, 102(4): 323-346. doi: 10.1061/AJGEB6.0000258
|
[15] |
CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
|
[16] |
何广讷. 评价土体液化势的能量法[J]. 岩土工程学报, 1981, 3(4): 11-21. doi: 10.3321/j.issn:1000-4548.1981.04.002
HE Guangna. Energy analysis procedure for evaluating soil liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(4): 11-21. (in Chinese) doi: 10.3321/j.issn:1000-4548.1981.04.002
|
[17] |
NEMAT-NASSER S, SHOKOOH A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing[J]. Canadian Geotechnical Journal, 1979, 16(4): 659-678. doi: 10.1139/t79-076
|
[18] |
孙锐, 袁晓铭. 非均等固结下饱和砂土孔压增量简化计算公式[J]. 岩土工程学报, 2005, 27(9): 1021-1025. doi: 10.3321/j.issn:1000-4548.2005.09.010
SUN Rui, YUAN Xiaoming. Simplified incremental formula for estimating pore water pressure of saturated sands under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1021-1025. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.09.010
|
[19] |
郭莹. 复杂应力条件下饱和松砂的不排水动力特性试验研究[D]. 大连: 大连理工大学, 2003.
GUO Ying. Experimental Study on Undrained Dynamic Characteristics of Saturated Loose Sand under Complex Stress Conditions[D]. Dalian: Dalian University of Technology, 2003. (in Chinese)
|
[20] |
CHEN G X, MA W J, QIN Y, et al. Liquefaction susceptibility of saturated coral sand subjected to various patterns of principal stress rotation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021093. doi: 10.1061/(ASCE)GT.1943-5606.0002590
|
[21] |
VAID Y P, CHERN J C. Effect of static shear on resistance to liquefaction[J]. Soils and Foundation, 1983, 23(1): 47-60. doi: 10.3208/sandf1972.23.47
|
[22] |
马维嘉, 陈国兴, 秦悠, 等. 初始主应力方向角对饱和珊瑚砂液化特性影响的试验[J]. 岩土工程学报, 2020, 42(3): 592-600. doi: 10.11779/CJGE202003022
MA Weijia, CHEN Guoxing, QIN You, et al. Experimental studies on effects of initial major stress direction angles on liquefaction characteristics of saturated coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 592-600. (in Chinese) doi: 10.11779/CJGE202003022
|
[23] |
马维嘉, 陈国兴, 李磊, 等. 循环荷载下饱和南沙珊瑚砂的液化特性试验研究[J]. 岩土工程学报, 2019, 41(5): 981-988. doi: 10.11779/CJGE201905023
MA Weijia, CHEN Guoxing, LI Lei, et al. Experimental study on liquefaction characteristics of saturated coral sand in Nansha Islands under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 981-988. (in Chinese) doi: 10.11779/CJGE201905023
|
[1] | Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641 |
[2] | ZHANG Yu, WANG Peng-sheng, LI Da-yong, ZHANG Yu-kun, WEI Kai. Numerical simulation method for hydraulic fracture pressure of perforated surrounding rock under hydraulic coupling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 409-419. DOI: 10.11779/CJGE202203002 |
[3] | LI Bin, HUANG Da, JIANG Qing-hui, CHEN Guo-qing. Fracture pattern and toughness of layered sandstone influenced by layer orientation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009 |
[4] | HENG Shuai, YANG Chun-he, ZENG Yi-jin, GUO Yin-tong, WANG Lei, HOU Zhen-kun. Experimental study on hydraulic fracture geometry of shale[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1243-1251. DOI: 10.11779/CJGE201407008 |
[5] | TANG Zhi, PAN Yi-shan, LI Zhong-hua, LI Li-ping, ZHENG Wen-hong. Charge induction mechanism in the process of fracture of coal-rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1156-1160. |
[6] | Comparative analyses of model tests and in-situ monitoring of zonal disintegration of rock mass in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1). |
[7] | BAI Jianbiao, WANG Xiangyu, JIA Mingkui, HOU Chaojiong. Theory and application of supporting in deep soft roadways[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 632-635. |
[8] | LI Shuqing, WANG Weijun, PAN Changliang. Numerical analysis on support structure of rock around deep roadway[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 377-381. |
[9] | ZHOU Cuiying, MU Chunmei. Relationship between micro-structural characters of fracture surface and strength of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1136-1141. |
[10] | ZHU Chuanqu, MIAO Xiexing, XIE Donghai. A model for optimization of support patterns of soft rock roadway based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 708-710. |