• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Bin, HUANG Da, JIANG Qing-hui, CHEN Guo-qing. Fracture pattern and toughness of layered sandstone influenced by layer orientation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009
Citation: LI Bin, HUANG Da, JIANG Qing-hui, CHEN Guo-qing. Fracture pattern and toughness of layered sandstone influenced by layer orientation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009

Fracture pattern and toughness of layered sandstone influenced by layer orientation

More Information
  • Received Date: December 03, 2018
  • Published Date: October 24, 2019
  • In order to study the anisotropic properties of layered sandstone on fracture mechanics, the three-point bending tests on the semi-circular specimens with different layer orientations and crack angles are conducted. The variations of normalized stress intensity factors, fracture toughness and fracture patterns of these specimens with layer orientation are revealed. The results illustrate that the fracture pattern of the specimens is closely related to the angle θ between the layer orientation and the loading direction, that is, tensile splitting along the layer when θ=0°, shearing along the layer when θ=30°, tensile splitting across the layer when θ=90° and composite shearing failure across and along the layer θ=45° and 60°. The fracture toughness of the specimens with different layer orientations greatly differs with the angle between the layer orientation and the loading direction; when crack angle α=0°, the specimens with θ of 90° has the maximum fracture toughness; and when those with θ of 0° have the minimum one, the ratio equals 2.36. Modes I and II normalized stress intensity factors are calculated by using the finite element code ABAQUS. It is shown that the mode II normalized stress intensity factor of the specimens varies more evidently with the layer orientation when α equals 0°, that is, mode I fracture when θ=0°and 90°, mixed mode when θ=45° and 60°, and mode II dominated fracture when θ=30°. In addition, for the specimens with α=30°~60°, the mode I and mode II normalized stress intensity factors show different variations with the layer orientation. The crack initiation angle, mixed-mode fracture toughness and fracture trajectory of the specimens are calculated by using the extended finite element method, and are in good agreement with the experimental results. The results indicate that crack initiation angles are influenced by the layer orientation and crack angle. The findings prove to be helpful for understanding the fracture characteristics of the layered rock materials and enriching the researches on fracture mechanics and numerical simulation of anisotropic rock materials.
  • [1]
    ABBASS T, ANDRE V.Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47: 313-322.
    [2]
    CHEN C S, PAN E, AMADEI B.Determination of deformability and tensile strength of anisotropic rock using Brazilian tests[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 43-61.
    [3]
    DEBECKER B, VERVOORT A.Experimental observation of fracture patterns in layered slate[J]. International Journal of Fracture, 2009, 159(1): 51-62.
    [4]
    CHO J W, KIM H, JEON S, et al.Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158-169.
    [5]
    刘运思, 付鹤林, 饶军应, 等. 不同层理方位影响下板岩各向异性巴西圆盘劈裂试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 785-791.
    (LIU Yun-si, FU He-lin, RAO Jun-ying, et al.Research on Brazilian disc splitting tests for anisotropy of slate under influence of different bedding orientations[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 785-791. (in Chinese))
    [6]
    衡帅, 杨春和, 张保平, 等. 页岩各向异性特征的试验研究[J]. 岩土力学, 2015, 36(3): 609-616.
    (HENG Shuai, YANG Chun-he, ZHANG Bao-ping, et al.Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616. (in Chinese))
    [7]
    刘胜利, 陈善雄, 余飞, 等. 绿泥石片岩各向异性特性研究[J]. 岩土力学, 2012, 33(12): 3616-3623.
    (LIU Sheng-li, CHEN Shan-xiong, YU Fei, et al.Anisotropic properties study of chlorite schist[J]. Rock and Soil Mechanics, 2012, 33(12): 3616-3623. (in Chinese))
    [8]
    KE C C, CHEN C S, TU C H.Determination of fracture toughness of anisotropic rocks by boundary element method[J]. Rock Mechanics and Rock Engineering, 2008, 41(4): 509-538.
    [9]
    DUTLER N, NEJATI M.On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks[J]. Engineering Fracture Mechanics, 2018, 201: 56-79.
    [10]
    KATAOKA M, OBARA Y, KURUPPU M.Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1353-1367.
    [11]
    CHANDLER M R.Fracture toughness anisotropy in shale[J]. Journal of Geophysical Research, 2016, 121: 1-16.
    [12]
    CHONG K P, KURUPPU M D.New specimen for fracture toughness determination of rock and other materials[J]. International Journal of Fracture, 1984, 26(2): 59-62.
    [13]
    LIM I L, JOHNSTON I W.Fracture testing of a soft rock with semi-circular specimens under three-point bending: part 1-mode I[J]. International Journal of Rock Mechanics and Mining Sciences, 1994, 31(3): 185-197.
    [14]
    LIM I L, JOHNSTON I W.Stress intensity factors for semi-circular specimens under three-point bending[J]. Engineering Fracture Mechanics, 1993, 44(3): 363-382.
    [15]
    KURUPPU M D, OBARA Y, AYATOLLAHI M R.ISRM- suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47: 267-274.
    [16]
    AYATOLLAHI M R, ALIHA M R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading[J]. Computational Materials Science, 2007, 38(4): 660-670.
    [17]
    ALIHA MRM, SISTANINIA M.Geometry effects and statistical analysis of mode I fracture in guiting limestone[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 51: 128-135.
    [18]
    CHONG K P, KURUPPU M D, KUSZMAUL J S.Fracture toughness determination of layered materials[J]. Engineering Fracture Mechanics, 1987, 28(1): 43-54.
    [19]
    WANG S S, YAU J F, CORTEN H T.A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity[J]. International Journal of Fracture, 1980, 16: 247-259.
    [20]
    BANKS-SILLS L, HERSHKOVITZ I, WAWRZYNEK P A, et al.Methods for calculating stress intensity factors in anisotropic materials: part I z=0 is a symmetric plane[J]. Engineering Fracture Mechanics, 2005, 72(15): 2328-2358.
    [21]
    BANKS-SILLS L, WAWRZYNEK P A, CARTER B, et al.Methods for calculating stress intensity factors in anisotropic materials: part II arbitrary geometry[J]. Engineering Fracture Mechanics, 2007, 74(8): 1293-1307.
    [22]
    MOHTARAMI E, BAGHBANAN A, HASHEMOLHOSSEINI H.Prediction of fracture trajectory in anisotropic rocks using modified maximum tangential stress criterion[J]. Computers and Geotechnics, 2017, 92: 108-120.
  • Related Articles

    [1]HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
    [2]Soil-water characteristic curve model considering grain size gradation and deformation of soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240339
    [3]LIANG Zhi-chao, ZHANG Ai-jun, REN Wen-yuan, WANG Yu-guo, HU Jin-fang, HAN Jing-wen. Fitting model for soil water characteristics of lime-improved loess and its microscopic properties[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 241-246. DOI: 10.11779/CJGE2022S1043
    [4]ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021
    [5]CAI Guo-qing, LIU Yi, XU Run-ze, LI Jian, ZHAO Cheng-gang. Experimental investigation for soil-water characteristic curve of red clay in full suction range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 13-16. DOI: 10.11779/CJGE2019S2004
    [6]WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012
    [7]MA Tian-tian, WEI Chang-fu, ZHOU Jia-zuo, TIAN Hui-hui. Freezing characteristic curves and water retention characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 172-177. DOI: 10.11779/CJGE2015S1033
    [8]SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020
    [9]YE Weimin, BAI Yun, JIN Qi, CHEN Bao, CUI Yunjun. Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 260-263.
    [10]YE Weimin, QIAN Lixin, BAI Yun, CHEN Bao. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 27-30.

Catalog

    Article views (253) PDF downloads (221) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return