• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902
Citation: HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902

Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths

More Information
  • Received Date: September 14, 2023
  • Available Online: March 24, 2024
  • The microstructure, soil-water characteristics, accumulative plastic strain (εp) and resilient modulus (MR) of a compacted Heilongjiang clay are compared. The specimens are imposed with three different moisture (wetting-drying, WD) and temperature (freeze-thaw, FT) paths (i.e., WD-FT, FT-WD and interlaced FTWD histories). The experimental results show that: (1) After moisture-temperature (M-T) actions, the structural pores develop while the textural ones shrink, which leads to reduction in the water retention capacity and increase in the desaturation rate. After M-T effects are stabilized, the microstructure and soil-water characteristics of the specimens with different M-T paths become similar. (2) Under at high moisture content (w), εp and MR are more sensitive to moisture changes (including w and suction s). After FT cycles, εp becomes more sensitive while MR becomes less sensitive to moisture changes. (3) After M-T effects, the MR-s relationships are nonlinear while the MR-w relationships are linear. The different M-T paths do not generate differences in εp and MR when the M-T effects are stabilized. (4) A model based on the mechanics of unsaturated soils is used to rationally predict the variation of MR with w and s for the specimens with different M-T paths.
  • [1]
    BROWN S F. Soil mechanics in pavement engineering[J]. Géotechnique, 1996, 46(3): 383-426. doi: 10.1680/geot.1996.46.3.383
    [2]
    HUANG Y H. Pavement Analysis and Design[M]. 2nd ed. New Jersey: Prentice Hall, 2004.
    [3]
    JONG D T, BOSSCHER P J, BENSON C H. Field assessment of changes in pavement moduli caused by freezing and thawing[J]. Transportation Research Record: Journal of the Transportation Research Board, 1998, 1615(1): 41-48. doi: 10.3141/1615-06
    [4]
    CULLEY RW. Effect of freeze-thaw cycling on stress-strain characteristics and volume change of a till subjected to repetitive loading[J]. Can Geotech J, 1971, 8(3): 359-371. doi: 10.1139/t71-038
    [5]
    WANG T L, LIU Y J, YAN H, et al. An experimental study on the mechanical properties of silty soils under repeated freeze-thaw cycles[J]. Cold Regions Science and Technology, 2015, 112: 51-65. doi: 10.1016/j.coldregions.2015.01.004
    [6]
    NEWMAN A C D, THOMASSON A J. Rothamsted studies of soil structure Ⅲ: pore size distributions and shrinkage processes[J]. Journal of Soil Science, 1979, 30(3): 415–39. doi: 10.1111/j.1365-2389.1979.tb00998.x
    [7]
    SARTORI G, FERRARI G A, PAGLIAI M. Changes in soil porosity and surface shrinkage in a remolded, saline clay soil treated with compost[J]. Soil Science, 1985, 139(6): 523.
    [8]
    张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3597-3603.

    ZHANG Ying, BING Hui, YANG Chengsong. Study on the influence mechanism of freeze-thaw cycle on the strength of silty clay based on SEM and MIP[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3597-3603. (in Chinese)
    [9]
    DING L Q, VANAPALLI S, ZOU W, et al. Freeze-thaw and wetting-drying effects on the hydromechanical behavior of a stabilized expansive soil[J]. Construction and Building Materials, 2021, 275: 122162. doi: 10.1016/j.conbuildmat.2020.122162
    [10]
    赵贵涛, 韩仲, 邹维列, 等. 干湿、冻融循环对膨胀土土-水及收缩特征的影响[J]. 岩土工程学报, 2021, 43(6): 1139-1146. doi: 10.11779/CJGE202106018

    ZHAO Guitao, HAN Zhong, ZOU Weilie, et al. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. (in Chinese) doi: 10.11779/CJGE202106018
    [11]
    万勇, 薛强, 吴彦, 等. 干湿循环作用下压实黏土力学特性与微观机制研究[J]. 岩土力学, 2015, 36(10): 2815-2824.

    WAN Yong, XUE Qiang, WU Yan, et al. Mechanical properties and micromechanisms of compacted clay during drying-wetting cycles[J]. Rock and Soil Mechanics, 2015, 36(10): 2815-2824. (in Chinese)
    [12]
    BURTON G J, PINEDA J, SHENG D, et al. Microstructural changes of an undisturbed, reconstituted and compacted high plasticity clay subjected to wetting and drying[J]. Engineering Geology, 2015, 193: 363-373. doi: 10.1016/j.enggeo.2015.05.010
    [13]
    NG C W W, PANG Y W. Experimental investigations of the soil-water characteristics of a volcanic soil[J]. Canadian Geotechnical Journal, 2000, 37(6): 1252-1264. doi: 10.1139/t00-056
    [14]
    MIAO L C, LIU S Y, LAI Y M. Research of soil–water characteristics and shear strength features of Nanyang expansive soil[J]. Engineering Geology, 2002, 65(4): 261-267. doi: 10.1016/S0013-7952(01)00136-3
    [15]
    YAO Y, LUO S, QIAN J, et al. Soil-water characteristics of the low liquid limit silt considering compaction and freeze-thaw action[J]. Advances in Civil Engineering, 2020, 2020(1): 8823666. doi: 10.1155/2020/8823666
    [16]
    ZHAO G T, ZOU W L, HAN Z, et al. Evolution of soil-water and shrinkage characteristics of an expansive clay during freeze-thaw and drying-wetting cycles[J]. Cold Regions Science and Technology, 2021, 186: 103275. doi: 10.1016/j.coldregions.2021.103275
    [17]
    龚壁卫, 吴宏伟, 王斌. 应力状态对膨胀土SWCC的影响研究[J]. 岩土力学, 2004, 25(12): 1915-1918. doi: 10.3969/j.issn.1000-7598.2004.12.010

    GONG Biwei, WU Hongwei, WANG Bin. Study on the influence of stress state on SWCC of expansive soil[J]. Rock and Soil Mechanics, 2004, 25(12): 1915-1918. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.12.010
    [18]
    王也, 王建磊, 鲁洋, 等. 南阳膨胀土冻融循环后的土水特征试验研究[J]. 长江科学院院报, 2019, 36(2): 91-96.

    WANG Ye, WANG Jianlei, LU Yang, et al. Experimental research on soil-water characteristics of Nanyang expansive soil subjected to freeze-thaw cycles[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(2): 91-96. (in Chinese)
    [19]
    CHAMBERLAIN E J, GOW A J. Effect of freezing and thawing on the permeability and structure of soils[J]. Developments in Geotechnical Engineering, 1979, 26(C): 73-92.
    [20]
    XU J, LI Y, REN C Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess[J]. Cold Regions Science and Technology, 2021, 181: 103183.
    [21]
    LIU J, ZHANG X, LI L, et al. Resilient behavior of unbound granular materials subjected to a closed-system freeze-thaw cycle[J]. Journal of Cold Regions Engineering, 2018, 32(1): 1–13.
    [22]
    ISHIKAWA T, LIN T S, KAWABATA S, et al. Effect evaluation of freeze-thaw on resilient modulus of unsaturated granular base course material in pavement[J]. Transportation Geotechnics, 2019, 21: 100284. doi: 10.1016/j.trgeo.2019.100284
    [23]
    NG C W W, ZHOU C, YUAN Q, et al. Resilient modulus of unsaturated subgrade soil: experimental and theoretical investigations[J]. Canadian Geotechnical Journal, 2013, 50(2): 223-232. doi: 10.1139/cgj-2012-0052
    [24]
    RAHMAN M S, ERLINGSSON S. Moisture influence on the resilient deformation behaviour of unbound granular materials[J]. International Journal of Pavement Engineering, 2016, 17(9): 763-775. doi: 10.1080/10298436.2015.1019497
    [25]
    LEKARP F, ISACSSON U, DAWSON A. State of the Art. Ⅱ: permanent strain response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 76-83. doi: 10.1061/(ASCE)0733-947X(2000)126:1(76)
    [26]
    LU Z, FANG R, CHEN L H, et al. Long-term deformation of highway subgrade under coupling effect of traffic load and drying-wetting cycles[J]. International Journal of Geomechanics, 2020, 20(2): 04019168. doi: 10.1061/(ASCE)GM.1943-5622.0001568
    [27]
    ZHAO Y F, REN S, JIANG D Y, et al. Influence of wetting-drying cycles on the pore structure and mechanical properties of mudstone from Simian Mountain[J]. Construction and Building Materials, 2018, 191: 923-931. doi: 10.1016/j.conbuildmat.2018.10.069
    [28]
    HAN Z, VANAPALLI SK. Model for predicting resilient modulus of unsaturated subgrade soil using soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2015, 52(10): 1605-1619. doi: 10.1139/cgj-2014-0339
    [29]
    HAN Z, VANAPALLI S K. Relationship between resilient modulus and suction for compacted subgrade soils[J]. Engineering Geology, 2016, 211: 85-97. doi: 10.1016/j.enggeo.2016.06.020
    [30]
    HAN Z, VANAPALLI S K, ZOU W L. Integrated approaches for predicting soil-water characteristic curve and resilient modulus of compacted fine-grained subgrade soils[J]. Canadian Geotechnical Journal, 2017, 54(5): 646-663. doi: 10.1139/cgj-2016-0349
    [31]
    公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

    Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
    [32]
    HAN Z, ZHAO G, LIN J, et al. Influences of temperature and moisture histories on the hydrostructural characteristics of a clay during desiccation[J]. Engineering Geology, 2022, 297: 106533. doi: 10.1016/j.enggeo.2022.106533
    [33]
    AASHTO, Designation T307—99: Determining the Resilient Modulus of Soils and Aggregate Materials[S]. Washington D C: American Association of State Highway and Transportation Officials, 2015.
    [34]
    非饱和土试验方法标准: T/CECS 1337—2023[S]. 北京: 中国建筑工业出版社, 2023.

    Standard for Unsaturated Soil Testing Method: T/CECS 1337—2023[S]. Beijing: China Architecture & Building Press, 2023. (in Chinese)
    [35]
    公路路基设计规范: JTG D 30—2004[S]. 北京: 人民交通出版社, 2005.

    Specifications for Design of Highway Subgrades: JTG D 30—2004[S]. Beijing: China Communications Press, 2005. (in Chinese)
    [36]
    BURTON G J, SHENG D, CAMPBELL C. Bimodal pore size distribution of a high-plasticity compacted clay[J]. Géotechnique Letters, 2014, 4(2): 88-93. doi: 10.1680/geolett.14.00003
    [37]
    ZHANG F, CUI Y J, YE W M. Distinguishing macro-and micro-pores for materials with different pore populations[J]. Géotechnique Letters, 2018, 8(2): 102-110. doi: 10.1680/jgele.17.00144
    [38]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1[J]. Soil Science Society of America Journal, 1980, 44(5): 892. doi: 10.2136/sssaj1980.03615995004400050002x
    [39]
    WERKMEISTER S, DAWSON A R, WELLNER F. Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record, 2001, 1757(1): 75-81. doi: 10.3141/1757-09
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return