• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021
Citation: ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021

Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand

More Information
  • Received Date: November 30, 2020
  • Available Online: November 30, 2022
  • In the construction of islands and reefs in the South China Sea, the high-temperature environment problem of calcareous sand foundation requires a comprehensive understanding of the evolution laws of calcareous sand thermal conductivity. Based on the thermal probe method, the thermal conductivity of cement-cemented calcareous sand under different test conditions is determined, and the variation laws of the influence factors such as water-cement ratio, curing period, cementing degree (cement content) and moisture content on the thermal conductivity are discussed. It is found that the thermal conductivity of the cement-cemented calcareous sand increases sharply firstly and then decreases slowly with the increasing curing period. At the same time, the thermal conductivity increases with the increase of the cement content and moisture content, and decreases with the increase of the water cement ratio. On this basis, the trend of thermal conductivity of the cement-cemented calcareous sand with the degree of cementation is explained by the scanning electron microscope and mercury intrusion porosimetry tests. The result shows that the macroscopic thermal conduction characteristics of the cement-cemented sand are determined by the variation of size and quantity of its micro-pores. The gelatinous hydration products continuously fill the internal pores of cemented sand, causing a reduction in porosity and improving the internal heat transfer of the sand sample. At the macro level, the thermal conductivity increases with the degree of cementation.
  • [1]
    刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展[J]. 岩土力学, 1995, 16(4): 74-83. doi: 10.16285/j.rsm.1995.04.010

    LIU Chong-quan, YANG Zhi-qiang, WANG Ren. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 1995, 16(4): 74-83. (in Chinese) doi: 10.16285/j.rsm.1995.04.010
    [2]
    汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997.

    WANG Ren, SONG Chao-jing, ZHAO Huan-ting, et al. Engineering Geology of Coral Reefs in Nansha Islands[M]. Beijing: Science Press, 1997. (in Chinese)
    [3]
    刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37, 44.

    LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37, 44. (in Chinese)
    [4]
    何绍衡, 夏唐代, 李玲玲, 等. 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究[J]. 岩石力学与工程学报, 2019, 38(12): 2535-2549. doi: 10.13722/j.cnki.jrme.2019.0170

    HE Shao-heng, XIA Tang-dai, LI Ling-ling, et al. Influence of temperature effect on shear strength and particle breaking evolution characteristics of coral reef sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2535-2549. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0170
    [5]
    LIU H, LIU H L, XIAO Y, et al. Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58(6): 1326-1338. doi: 10.1016/j.sandf.2018.07.010
    [6]
    付慧丽, 莫红艳, 曾召田, 等. 钙质砂热传导性能试验[J]. 岩土工程学报, 2019, 41(增刊2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2017.htm

    FU Hui-li, MO Hong-yan, ZENG Zhao-tian, et al. Experimental study on thermal conductivity of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 61-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2017.htm
    [7]
    肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm

    XIAO Peng, LIU Han-long, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm
    [8]
    王丽, 鲁晓兵, 王淑云, 等. 钙质砂的胶结性及对力学性质影响的实验研究[J]. 实验力学, 2009, 24(2): 133-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200902007.htm

    WANG Li, LU Xiao-bing, WANG Shu-yun, et al. Experimental investigation on cementation of calcareous sand and its basic mechanical characteristics[J]. Journal of Experimental Mechanics, 2009, 24(2): 133-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200902007.htm
    [9]
    李昊, 唐朝生, 刘博, 等. 模拟海水环境下MICP固化钙质砂的力学特性[J]. 岩土工程学报, 2020, 42(10): 1931-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm

    LI Hao, TANG Chao-sheng, LIU Bo, et al. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1931-1939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm
    [10]
    CHANEY R C, DEMARS K R, ISMAIL M A, et al. Sample preparation technique for artificially cemented soils[J]. Geotechnical Testing Journal, 2000, 23(2): 171.
    [11]
    朱长歧, 周斌, 刘海峰. 天然胶结钙质土强度及微观结构研究[J]. 岩土力学, 2014, 35(6): 1655-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm

    ZHU Chang-qi, ZHOU Bin, LIU Hai-feng. Investigation on strength and microstracture of naturally cemented calcareous soil[J]. Rock and Soil Mechanics, 2014, 35(6): 1655-1663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm
    [12]
    方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm

    FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. Experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
    [13]
    刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45.

    LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese)
    [14]
    郑俊杰, 吴超传, 宋杨, 等. MICP胶结钙质砂的强度试验及强度离散性研究[J]. 哈尔滨工程大学学报, 2020, 41(2): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002014.htm

    ZHENG Jun-jie, WU Chao-chuan, SONG Yang, et al. Study of the strength test and strength dispersion of MICP-treated calcareous sand[J]. Journal of Harbin Engineering University, 2020, 41(2): 250-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002014.htm
    [15]
    CUI M J, ZHENG J J, DAHAL B K, et al. Effect of waste rubber particles on the shear behaviour of bio-cemented calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1429-1439.
    [16]
    董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm

    DONG Bo-wen, LIU Shi-yu, YU Jin, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm
    [17]
    普通混凝土力学性能试验方法标准:GB/T 50081—2002[S]. 2003.

    Standard for Test Methods of Mechanical Properties on Ordinary Concrete: GB/T 50081—2002[S]. 2003. (in Chinese)
    [18]
    胡明鉴, 蒋航海, 崔翔, 等. 钙质砂电导率与相关性问题初探[J]. 岩土力学, 2017, 38(增刊2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2022.htm

    HU Ming-jian, JIANG Hang-hai, CUI Xiang, et al. Preliminary study of conductivity and correlation problems of calcareous sand[J]. Rock and Soil Mechanics, 2017, 38(S2): 158-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2022.htm
    [19]
    JEONG J H, KIM N. A thermal conductivity model for hydrating concrete pavements[J]. Journal of the Korea Concrete Institute, 2004, 16(1): 125-129.
    [20]
    李林香, 谢永江, 冯仲伟, 等. 水泥水化机理及其研究方法[J]. 混凝土, 2011(6): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201106024.htm

    LI Lin-xiang, XIE Yong-jiang, FENG Zhong-wei, et al. Cement hydration mechanism and research methods[J]. Concrete, 2011(6): 76-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201106024.htm
    [21]
    徐云山, 曾召田, 孙德安, 等. 高温下含湿土壤水汽潜热效应的试验研究[J]. 防灾减灾工程学报, 2017, 37(4): 593-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201704014.htm

    XU Yun-shan, ZENG Zhao-tian, SUN De-an, et al. Experimental study on latent heat effect of moist soil at high temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 593-597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201704014.htm
    [22]
    XU Y S, SUN D A, ZENG Z T, et al. Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range[J]. International Journal of Heat and Mass Transfer, 2019, 138: 562-570.
    [23]
    孙红萍, 袁迎曙, 蒋建华, 等.表层混凝土导热系数规律的试验研究[J]. 混凝土, 2009(5): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200905023.htm

    SUN Hong-ping, YUAN Ying-shu, JIANG Jian-hua, et al. Experimental study on thermal conductivity of the surface layer concretes[J]. Concrete, 2009(5): 59-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200905023.htm
    [24]
    曾召田, 范理云, 莫红艳, 等. 土壤热导率的影响因素实验研究[J]. 太阳能学报, 2018, 39(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802013.htm

    ZENG Zhao-tian, FAN Li-yun, MO Hong-yan, et al. Experimental study of influence factors of soil thermal conductivity[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 377-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802013.htm
    [25]
    曾召田, 赵艳林, 吕海波, 等. 广西红黏土热物理特性及影响因素试验研究[J]. 岩土工程学报, 2018, 40(增刊1): 252-258, 134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1042.htm

    ZENG Zhao-tian, ZHAO Yan-lin, LÜ Hai-bo, et al. Experimental study on thermal properties of red clay in Guangxi Province and its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 252-258, 134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1042.htm
    [26]
    张丙树, 顾凯, 李金文, 等. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 2020, 28(4): 725-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm

    ZHANG Bing-shu, GU Kai, LI Jin-wen, et al. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 2020, 28(4): 725-733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm
  • Related Articles

    [1]HUANG Juan, HE Zhen, YU Jun, HE Weijie. Analytical solutions and application of circular cofferdams considering backseal effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2510-2518. DOI: 10.11779/CJGE20221101
    [2]CHEN Peipei, ZHANG Xingbo, JIN Ming, QI Jilin. Analytical solution of transient seepage problem in unsaturated soil based on principle of homogeneous construction[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2490-2499. DOI: 10.11779/CJGE20220903
    [3]YU Jun, LI Dongkai, HU Zhongwei, ZHENG Jingfan. Analytical solution of steady seepage field of foundation pit considering thickness of retaining wall[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1402-1411. DOI: 10.11779/CJGE20220357
    [4]SHU Rong-jun, KONG Ling-wei, WANG Jun-tao, JIAN Tao, ZHOU Zhen-hua. Mechanical behavior of granite residual soil during wetting considering effects of initial unloading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 154-159, 165. DOI: 10.11779/CJGE2022S1028
    [5]GUO Yu-feng, WANG Hua-ning, JIANG Ming-jing. Analytical solutions of seepage field for underwater shallow-buried parallel twin tunnels[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1088-1096. DOI: 10.11779/CJGE202106012
    [6]DOU Jin-xi, ZHANG Gui-jin, CHEN An-zhong, YANG Bo-shi, XIN Rui-liang, JIANG Huang-bin, DUAN Ji-hong, LI Hai. Mechanism of seepage control of pulsating grouting in completely weathered granite stratum[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 309-318. DOI: 10.11779/CJGE202102011
    [7]YAO Xi-he, ZHAO Xiao-bao, GONG Qiu-ming, MA Hong-su, LI Xiao-zhao, TANG Wei, LU Guang-liang, HE Guan-wen. Linear cutting experiments on crack modes of rock under indentation of a single disc cutter[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1705-1713. DOI: 10.11779/CJGE201409018
    [8]WU Li-zhou, HUANG Run-qiu. Analytical analysis of coupled seepage in unsaturated soils considering varying surface flux[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1370-1375.
    [9]XIE Qiang, Carlos Dinis da Gama, YU Xianbin. Acoustic emission behaviors of aplite granite[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 745-749.
    [10]DU Shouji, ZHI Hongtao. Experimental research on the mechanical properties of granite rock and concrete after high-temperature[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 482-485.
  • Cited by

    Periodical cited type(9)

    1. 辛灏辉,高卿林,冯鹏,刘玉擎. 桥梁结构中E-GFRP单向板徐变性能与双尺度均匀化数值评估. 工程力学. 2024(08): 93-106 .
    2. 熊壮,杨学祥,范济敏. 充气膨胀控制锚杆的蠕变试验. 科学技术与工程. 2024(26): 11385-11392 .
    3. 陈文杰,叶毅荣. 玻璃纤维筋抗浮锚杆在某工程中的抗拔试验研究与应用. 广东建材. 2024(10): 76-79 .
    4. 刘鹏,刘军,郑仔弟,郑辉,白雪. 基于GFRP筋与钢绞线复合式锚杆支护施工的关键技术研究. 市政技术. 2023(08): 245-252 .
    5. 井德胜,白晓宇,王海刚,张明义,李翠翠,焦玉进,闫君,王忠胜. 玻璃纤维增强聚合物锚杆蠕变性能研究进展. 复合材料科学与工程. 2022(02): 119-128 .
    6. 白晓宇,井德胜,张明义,涂兵雄,魏国,吕承禄,黄春霞. 全长黏结非金属抗浮锚杆体系设计方法研究. 中南大学学报(自然科学版). 2022(08): 3168-3177 .
    7. 井德胜,白晓宇,刘超,刘永江,张明义,黄永峰. 抗浮锚杆荷载-位移特性及极限承载力预测. 科学技术与工程. 2021(22): 9570-9576 .
    8. 井德胜,白晓宇,冯志威,张明义,李翠翠. 玄武岩纤维增强聚合物锚杆用于地下结构抗浮的可行性研究. 材料导报. 2021(19): 19223-19229 .
    9. 白晓宇,刘雪颖,张明义,井德胜,郑晨. GFRP筋及钢筋抗浮锚杆承载特性现场试验及荷载-位移模型. 复合材料学报. 2021(12): 4138-4149 .

    Other cited types(3)

Catalog

    Article views (250) PDF downloads (206) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return