Citation: | ZENG Zhao-tian, FU Hui-li, LÜ Hai-bo, LIANG Zhen, YU Hai-hao. Thermal conduction characteristics and microcosmic mechanism of cement-cemented calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2330-2338. DOI: 10.11779/CJGE202112021 |
[1] |
刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展[J]. 岩土力学, 1995, 16(4): 74-83. doi: 10.16285/j.rsm.1995.04.010
LIU Chong-quan, YANG Zhi-qiang, WANG Ren. The present condition and development in studies of mechanical properties of calcareous soils[J]. Rock and Soil Mechanics, 1995, 16(4): 74-83. (in Chinese) doi: 10.16285/j.rsm.1995.04.010
|
[2] |
汪稔, 宋朝景, 赵焕庭, 等. 南沙群岛珊瑚礁工程地质[M]. 北京: 科学出版社, 1997.
WANG Ren, SONG Chao-jing, ZHAO Huan-ting, et al. Engineering Geology of Coral Reefs in Nansha Islands[M]. Beijing: Science Press, 1997. (in Chinese)
|
[3] |
刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37, 44.
LIU Chong-quan, WANG Ren. Preliminary research on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-37, 44. (in Chinese)
|
[4] |
何绍衡, 夏唐代, 李玲玲, 等. 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究[J]. 岩石力学与工程学报, 2019, 38(12): 2535-2549. doi: 10.13722/j.cnki.jrme.2019.0170
HE Shao-heng, XIA Tang-dai, LI Ling-ling, et al. Influence of temperature effect on shear strength and particle breaking evolution characteristics of coral reef sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2535-2549. (in Chinese) doi: 10.13722/j.cnki.jrme.2019.0170
|
[5] |
LIU H, LIU H L, XIAO Y, et al. Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58(6): 1326-1338. doi: 10.1016/j.sandf.2018.07.010
|
[6] |
付慧丽, 莫红艳, 曾召田, 等. 钙质砂热传导性能试验[J]. 岩土工程学报, 2019, 41(增刊2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2017.htm
FU Hui-li, MO Hong-yan, ZENG Zhao-tian, et al. Experimental study on thermal conductivity of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 61-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2017.htm
|
[7] |
肖鹏, 刘汉龙, 张宇, 等. 微生物温控加固钙质砂动强度特性研究[J]. 岩土工程学报, 2021, 43(3): 511-519. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm
XIAO Peng, LIU Han-long, ZHANG Yu, et al. Dynamic strength of temperature-controlled MICP-treated calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 511-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202103018.htm
|
[8] |
王丽, 鲁晓兵, 王淑云, 等. 钙质砂的胶结性及对力学性质影响的实验研究[J]. 实验力学, 2009, 24(2): 133-143. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200902007.htm
WANG Li, LU Xiao-bing, WANG Shu-yun, et al. Experimental investigation on cementation of calcareous sand and its basic mechanical characteristics[J]. Journal of Experimental Mechanics, 2009, 24(2): 133-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX200902007.htm
|
[9] |
李昊, 唐朝生, 刘博, 等. 模拟海水环境下MICP固化钙质砂的力学特性[J]. 岩土工程学报, 2020, 42(10): 1931-1939. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm
LI Hao, TANG Chao-sheng, LIU Bo, et al. Mechanical behavior of MICP-cemented calcareous sand in simulated seawater environment[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1931-1939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010025.htm
|
[10] |
CHANEY R C, DEMARS K R, ISMAIL M A, et al. Sample preparation technique for artificially cemented soils[J]. Geotechnical Testing Journal, 2000, 23(2): 171.
|
[11] |
朱长歧, 周斌, 刘海峰. 天然胶结钙质土强度及微观结构研究[J]. 岩土力学, 2014, 35(6): 1655-1663. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm
ZHU Chang-qi, ZHOU Bin, LIU Hai-feng. Investigation on strength and microstracture of naturally cemented calcareous soil[J]. Rock and Soil Mechanics, 2014, 35(6): 1655-1663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406022.htm
|
[12] |
方祥位, 申春妮, 楚剑, 等. 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36(10): 2773-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al. Experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36(10): 2773-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510005.htm
|
[13] |
刘汉龙, 肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45.
LIU Han-long, XIAO Peng, XIAO Yang, et al. Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese)
|
[14] |
郑俊杰, 吴超传, 宋杨, 等. MICP胶结钙质砂的强度试验及强度离散性研究[J]. 哈尔滨工程大学学报, 2020, 41(2): 250-256. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002014.htm
ZHENG Jun-jie, WU Chao-chuan, SONG Yang, et al. Study of the strength test and strength dispersion of MICP-treated calcareous sand[J]. Journal of Harbin Engineering University, 2020, 41(2): 250-256. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002014.htm
|
[15] |
CUI M J, ZHENG J J, DAHAL B K, et al. Effect of waste rubber particles on the shear behaviour of bio-cemented calcareous sand[J]. Acta Geotechnica, 2021, 16(5): 1429-1439.
|
[16] |
董博文, 刘士雨, 俞缙, 等. 基于微生物诱导碳酸钙沉淀的天然海水加固钙质砂效果评价[J]. 岩土力学, 2021, 42(4): 1104-1114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm
DONG Bo-wen, LIU Shi-yu, YU Jin, et al. Evaluation of the effect of natural seawater strengthening calcareous sand based on MICP[J]. Rock and Soil Mechanics, 2021, 42(4): 1104-1114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104023.htm
|
[17] |
普通混凝土力学性能试验方法标准:GB/T 50081—2002[S]. 2003.
Standard for Test Methods of Mechanical Properties on Ordinary Concrete: GB/T 50081—2002[S]. 2003. (in Chinese)
|
[18] |
胡明鉴, 蒋航海, 崔翔, 等. 钙质砂电导率与相关性问题初探[J]. 岩土力学, 2017, 38(增刊2): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2022.htm
HU Ming-jian, JIANG Hang-hai, CUI Xiang, et al. Preliminary study of conductivity and correlation problems of calcareous sand[J]. Rock and Soil Mechanics, 2017, 38(S2): 158-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2022.htm
|
[19] |
JEONG J H, KIM N. A thermal conductivity model for hydrating concrete pavements[J]. Journal of the Korea Concrete Institute, 2004, 16(1): 125-129.
|
[20] |
李林香, 谢永江, 冯仲伟, 等. 水泥水化机理及其研究方法[J]. 混凝土, 2011(6): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201106024.htm
LI Lin-xiang, XIE Yong-jiang, FENG Zhong-wei, et al. Cement hydration mechanism and research methods[J]. Concrete, 2011(6): 76-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF201106024.htm
|
[21] |
徐云山, 曾召田, 孙德安, 等. 高温下含湿土壤水汽潜热效应的试验研究[J]. 防灾减灾工程学报, 2017, 37(4): 593-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201704014.htm
XU Yun-shan, ZENG Zhao-tian, SUN De-an, et al. Experimental study on latent heat effect of moist soil at high temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(4): 593-597. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201704014.htm
|
[22] |
XU Y S, SUN D A, ZENG Z T, et al. Effect of temperature on thermal conductivity of lateritic clays over a wide temperature range[J]. International Journal of Heat and Mass Transfer, 2019, 138: 562-570.
|
[23] |
孙红萍, 袁迎曙, 蒋建华, 等.表层混凝土导热系数规律的试验研究[J]. 混凝土, 2009(5): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200905023.htm
SUN Hong-ping, YUAN Ying-shu, JIANG Jian-hua, et al. Experimental study on thermal conductivity of the surface layer concretes[J]. Concrete, 2009(5): 59-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200905023.htm
|
[24] |
曾召田, 范理云, 莫红艳, 等. 土壤热导率的影响因素实验研究[J]. 太阳能学报, 2018, 39(2): 377-384. https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802013.htm
ZENG Zhao-tian, FAN Li-yun, MO Hong-yan, et al. Experimental study of influence factors of soil thermal conductivity[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 377-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYLX201802013.htm
|
[25] |
曾召田, 赵艳林, 吕海波, 等. 广西红黏土热物理特性及影响因素试验研究[J]. 岩土工程学报, 2018, 40(增刊1): 252-258, 134. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1042.htm
ZENG Zhao-tian, ZHAO Yan-lin, LÜ Hai-bo, et al. Experimental study on thermal properties of red clay in Guangxi Province and its influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 252-258, 134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1042.htm
|
[26] |
张丙树, 顾凯, 李金文, 等. 钙质砂破碎过程及其微观机制试验研究[J]. 工程地质学报, 2020, 28(4): 725-733. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm
ZHANG Bing-shu, GU Kai, LI Jin-wen, et al. Study on crushing process and microscopic mechanism of calcareous sand[J]. Journal of Engineering Geology, 2020, 28(4): 725-733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004006.htm
|
1. |
俞奎,章敏,秦文权,孙静雯,张开翔,宋利埼. 隧道穿越下埋地管线分布式光纤变形及脱空反演分析. 岩土力学. 2025(03): 894-904 .
![]() | |
2. |
张连贵,刘峰建,张鑫,郭广礼,李怀展,宫亚强. 采动影响下浅埋输油气管线变形监测与风险性评价方法及应用实践. 金属矿山. 2024(03): 183-189 .
![]() | |
3. |
刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
![]() | |
4. |
喻文昭,朱鸿鹄,王德洋,谢天铖,裴华富,施斌. 荷载作用下砂土边坡-管道相互作用试验研究. 岩土力学. 2024(05): 1309-1320 .
![]() | |
5. |
崔萧. 基于DVS的地下管网及道路病害监测技术应用. 岩土工程技术. 2024(03): 322-329 .
![]() | |
6. |
庞文彬,郑鑫,葛亮,张凌云,张宁宁. 基于振动提取的沙漠埋地管道弯曲变形监测技术研究. 石油化工自动化. 2024(04): 66-70 .
![]() | |
7. |
李长山,迟帅. 基于时序InSAR遥感监测的中山市软土地面沉降特征及成因研究. 地质灾害与环境保护. 2024(04): 31-38 .
![]() | |
8. |
胡少伟,杨金辉. 大口径高性能聚氯乙烯管道研发与工程安全保障技术. 工程力学. 2023(01): 1-31 .
![]() | |
9. |
朱鸿鹄. 工程地质界面:从多元表征到演化机理. 地质科技通报. 2023(01): 1-19 .
![]() | |
10. |
史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 .
![]() | |
11. |
卢毅,宋泽卓,刘瑾,卜凡,祁长青. 基于DFOS的通州湾地区地面沉降监测与变形分析. 河海大学学报(自然科学版). 2023(02): 81-88 .
![]() | |
12. |
喻文昭,朱鸿鹄,王德洋,李豪杰,叶霄. 埋地管道竖向隆起破坏研究综述. 防灾减灾工程学报. 2023(02): 189-200 .
![]() | |
13. |
张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 .
![]() | |
14. |
魏祥龙,尹书冉,夏志康,杨涵苑,左利钦,林青炜. 软体排塌陷弯曲变形的应变响应特征分析. 水运工程. 2023(08): 90-95+138 .
![]() | |
15. |
魏祥龙,杨海亮,左利钦,陆永军,杨涵苑,袁赛瑜. 光纤传感监测护底软体排的可行性探讨. 水电能源科学. 2023(12): 147-151 .
![]() | |
16. |
张鑫,郭广礼,李怀展,张连贵,刘峰建,蒋乾,陈延康. 煤矿开采影响下浅埋输油管线变形及力学响应特性. 科学技术与工程. 2023(35): 15052-15059 .
![]() | |
17. |
韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
![]() | |
18. |
胡健,雒燕,刘瑾,魏世杰,何承宗,李明阳,张晨阳. 基于FBG机械连接部件微渗漏监测应用. 中国海洋平台. 2022(06): 28-34 .
![]() | |
19. |
施斌,朱鸿鹄,张丹,程刚. 从岩土体原位检测、探测、监测到感知. 工程地质学报. 2022(06): 1811-1818 .
![]() | |
20. |
刘保余,袁龙春,尚博,侯东,蒋勇,赵冰,张东. 长输油气埋地管道外检测技术研究. 管道技术与设备. 2021(03): 31-34 .
![]() | |
21. |
丁志国,龚占龙,盛智勇. FBG传感器在排水管道水位实时监测中的应用. 河北农机. 2021(07): 52-53 .
![]() |