• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Cheng-cheng, SHI Bin, ZHU Hong-hu, WEI Guang-qing. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1670-1678. DOI: 10.11779/CJGE201909011
Citation: ZHANG Cheng-cheng, SHI Bin, ZHU Hong-hu, WEI Guang-qing. Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1670-1678. DOI: 10.11779/CJGE201909011

Theoretical analysis of mechanical coupling between soil and fiber optic strain sensing cable for distributed monitoring of ground settlement

More Information
  • Received Date: November 24, 2018
  • Published Date: September 24, 2019
  • The mechanical coupling between soil and fiber optic cable is vital to the validity of ground settlement data monitored using distributed fiber optic sensing (DFOS). Here a perfect stratum-backfill-cable coupling is clearly defined—the interface shear stresses do not exceed the strengths, and the strain transfers efficiently from the strata to the fiber core. The critical confining pressure and the critical depth are proposed to characterize the backfill-cable interface adhesion. The cable with a low Young's modulus or a small radius corresponds to a low critical confining pressure or depth. Given the backfill and cable properties are known, the critical confining pressure or depth is solely dependent on the maximum strain gradient. Based on the classical strain transfer model and the Goodman's hypothesis, a theoretical model is established to quantify the stratum-backfill-cable strain transfer efficiency. A comprehensive parametric analysis is carried out to investigate the influences of cable, backfill and strata properties on the strain transfer coefficient. Finally, the proposed method is validated using the field monitoring data collected from a DFOS-instrumented borehole in Shengze (Suzhou, China). This study may provide a sound basis for monitoring the ground settlement using the DFOS technique.
  • [1]
    薛禹群, 张云, 叶淑君, 等. 中国地面沉降及其需要解决的几个问题[J]. 第四纪研究, 2003, 23(6): 585-593.
    (XUE Yu-qun, ZHANG Yun, YE Shu-jun, et al.Land subsidence in China and its problems[J]. Quaternary Sciences, 2003, 23(6): 585-593. (in Chinese))
    [2]
    GALLOWAY D L, JONES D R, INGEBRITSEN S E.Land subsidence in the United States[M]. Virginia: US Geological Survey Circular 1182, 1999.
    [3]
    施斌, 张丹, 朱鸿鹄. 地质与岩土工程分布式光纤监测技术[M]. 北京: 科学出版社, 2019.
    (SHI Bin, ZHANG Dan, ZHU Hong-hu.Distributed fiber optic sensing for geoengineering monitoring[M]. Beijing: Science Press, 2019. (in Chinese))
    [4]
    MOHAMAD H, BENNETT P J, SOGA K, et al.Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement[J]. Géotechnique, 2010, 60(12): 927-938.
    [5]
    HAUSWIRTH D, PUZRIN A M, CARRERA A, et al.Use of fibre-optic sensors for simple assessment of ground surface displacements during tunnelling[J]. Géotechnique, 2014, 64(10): 837-842.
    [6]
    WU J, JIANG H, SU J, et al.Application of distributed fiber optic sensing technique in land subsidence monitoring[J]. Journal of Civil Structural Health Monitoring, 2015, 5(5): 587-597.
    [7]
    丁勇, 王平, 何宁, 等. FBG分布式沉降管在盾构隧道沉降监测中的应用[J]. 地下空间与工程学报, 2016, 12(5): 1320-1325.
    (DING Yong, WANG Ping, HE Ning, et al.A new method to measure the deformation of shield tunnel based on FBG[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(5): 1320-1325. (in Chinese))
    [8]
    侯公羽, 谢冰冰, 江玉生, 等. 用于巷道沉降变形监测的光纤锯齿状布设技术与原理[J]. 岩土力学, 2017, 38(增刊1): 96-102.
    (HOU Gong-yu, XIE Bing-bing, JIANG Yu-sheng, et al.Sawtooth layout technology and principle of fiber used in deformation monitoring of roadway subsidence[J]. Rock and Soil Mechanics, 2017, 38(S1): 96-102. (in Chinese))
    [9]
    ZHANG C C, SHI B, GU K, et al.Vertically distributed sensing of deformation using fiber optic sensing[J]. Geophysical Research Letters, 2018, 45(21): 11732-11741.
    [10]
    ANSARI F, LIBO Y.Mechanics of bond and interface shear transfer in optical fiber sensors[J]. Journal of Engineering Mechanics, 1998, 124(4): 385-394.
    [11]
    LI D S, LI H, REN L, et al.Strain transferring analysis of fiber Bragg grating sensors[J]. Optical Engineering, 2006, 45(2): 024402.
    [12]
    ZHOU Z, LI J, OU J.Interface transferring mechanism and error modification of embedded FBG strain sensors[J]. Frontiers of Electrical and Electronic Engineering in China, 2007, 2(1): 92-98.
    [13]
    XIANG P, WANG H.Optical fibre-based sensors for distributed strain monitoring of asphalt pavements[J]. International Journal of Pavement Engineering, 2018, 19(9): 842-850.
    [14]
    ZHANG C C, ZHU H H, SHI B, et al.Interfacial characterization of soil-embedded optical fiber for ground deformation measurement[J]. Smart Materials and Structures, 2014, 23(9): 095022.
    [15]
    ZHANG C C, ZHU H H, SHI B.Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement[J]. Scientific Reports, 2016, 6: 36469.
    [16]
    张丁丁, 柴敬, 李毅, 等. 松散层沉降光纤光栅监测的应变传递及其工程应用[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3289-3297.
    (ZHANG Ding-ding, CHAI Jing, LI Yi, et al.Strain transfer function of embedded fiber Bragg grating sensors for unconsolidated layer settlement deformation detector and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3289-3297. (in Chinese))
    [17]
    张诚成, 施斌, 刘苏平, 等. 钻孔回填料与直埋式应变传感光缆耦合性研究[J]. 岩土工程学报, 2018, 40(11): 1-9.
    (ZHANG Cheng-cheng, SHI Bin, LIU Su-ping, et al.Mechanical coupling between borehole backfill and fiber-optic strain-sensing cable[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 1-9. (in Chinese))
    [18]
    杨豪, 张丹, 施斌, 等. 直埋式光纤传感钻孔注浆耦合材料配合比试验研究[J]. 防灾减灾工程学报, 2012, 32(6): 714-719.
    (YANG Hao, ZHANG Dan, SHI Bin, et al.Experiments on coupling materials' proportioning of borehole grouting in directly implanted optic fiber sensing[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(6): 714-719. (in Chinese))
    [19]
    CHANG T S, WOODS R D.Effect of confining pressure on shear modulus of cemented sand[C]// CAKMAK A S. Developments in Geotechnical Engineering. Amsterdam: Elsevier, 1987: 193-208.
  • Cited by

    Periodical cited type(28)

    1. 刘天翔,朱鸿鹄,吴冰,李豪杰,胡乐乐. 埋入式应变感测光缆-冻土界面渐进破坏机制研究. 岩土力学. 2024(01): 131-140 .
    2. 凌建明,张玉,钱劲松,吴振吉,郑纯宇. 冻融条件下路基温度场和湿度场分布式感知试验. 同济大学学报(自然科学版). 2024(04): 582-591 .
    3. 刘奇,刘相林,曹广勇,赵金海,蒋长宝. 基于OFDR的采动覆岩铰接结构回转角度及“三带”变形表征研究. 煤炭科学技术. 2024(03): 63-73 .
    4. 刘奇,牛家宝,李青海,赵金海,訾建潇. 采动覆岩裂隙演化的光纤监测耦合性及分带表征. 煤炭学报. 2024(03): 1345-1357 .
    5. 许时昂,张平松,程刚,吴海波,张涛. 砂土压缩变形传感光缆耦合试验分析与预测模型研究. 岩土力学. 2024(05): 1570-1582 .
    6. 张敏捷,李佳康,张峰,裴华富. 基于OFDR技术的分布式光纤–砂土界面耦合性试验与评价模型研究. 岩石力学与工程学报. 2024(S1): 3557-3567 .
    7. 蔡毅,沈华章,黄厚旭,严家平,蔡国军,蔡永祥,杨博,孙斌杨. 厚松散层矿区开采沉陷拉伸区域土体内部变形演化规律研究——以淮北孙疃煤矿为例. 煤炭科学技术. 2024(08): 36-49 .
    8. 史淞戈,施斌,刘苏平,张诚成,顾凯,何健辉. 钻孔回填料粒径对传感光缆应变耦合性影响研究. 岩土工程学报. 2023(01): 162-170 . 本站查看
    9. 张峰,裴华富. 一种用于滑坡位移监测的OFDR测斜仪研发. 中国测试. 2023(01): 119-125 .
    10. 秦仕伟,高磊,钱继奔,韦兵兵,徐中权. 桩基静载过程中OFDR温度补偿试验研究. 河南科学. 2023(04): 547-551 .
    11. 冯奕军,徐浩. 基于光纤温度传感的光缆外层断股高精度监测. 光通信研究. 2023(03): 46-52 .
    12. 刘昊,徐良骥,刘潇鹏,付翔,陈秋影. 基于分布式光纤的矿区非采动沉降规律研究. 安徽理工大学学报(自然科学版). 2023(04): 46-53 .
    13. 吴刚,侯士通,张建,吴京,傅大放,陈力,王庆,田馨. 城市生命线工程安全多层次监测体系与预警技术研究. 土木工程学报. 2023(11): 1-15 .
    14. 徐良骥,曹宗友,刘潇鹏,张坤,刘永琪. 基于分布式光纤的松散含水层失水沉降规律研究. 煤炭科学技术. 2023(10): 231-241 .
    15. 高磊,韩川,黄坚,王洋,周乐. 基于BOTDR的能源桩现场试验与承载特性分析. 岩土力学. 2022(S1): 117-126 .
    16. 张平松,孙斌杨,许时昂,吴荣新,付茂如,甘圣丰,刘畅. 煤系上覆地层移动变形钻孔多参数监测技术. 煤炭学报. 2022(08): 2907-2922 .
    17. 韦超,朱鸿鹄,高宇新,王静,张巍,施斌. 地面塌陷分布式光纤感测模型试验研究. 岩土力学. 2022(09): 2443-2456 .
    18. 张郑伟. 忻州窑矿卸压钻孔技术参数研究. 同煤科技. 2021(01): 32-34 .
    19. 何宁,何斌,张宗亮,张中流,周彦章,汪璋淳,郑栋. 蓄水初期红石岩堰塞坝混凝土防渗墙变形与受力分析. 岩土工程学报. 2021(06): 1125-1130 . 本站查看
    20. 向伏林,杨天亮,顾凯,施斌,刘春,刘苏平,张诚成,姜月华. 钻孔全断面分布式光纤监测中光缆-土体变形协调性的离散元数值模拟. 岩土力学. 2021(06): 1743-1754 .
    21. 杨斌. 市政道路加宽工程地基沉降控制方法研究. 市政技术. 2021(03): 17-20 .
    22. 肖菊,段鹏飞. 面向楼宇结构健康的光纤传感网络监测系统研究. 红外与激光工程. 2021(08): 288-294 .
    23. 孙斌杨,张平松. 基于DFOS的采场围岩变形破坏监测研究进展与展望. 工程地质学报. 2021(04): 985-1001 .
    24. 何斌,何宁,张中流,汪璋淳,胡德新,智月荣. 基于传感光纤技术的堤坝分布式变形监测. 水利水运工程学报. 2021(05): 137-143 .
    25. 王文文,李勇,韩征,李敏. 从T179次列车脱轨事故浅谈构建重大线性工程地质安全监测预警体系. 城市地质. 2020(02): 137-140 .
    26. 侯公羽,李子祥,胡涛,周天赐,肖海林. 植入式光纤传感器在隧道结构中的边界效应研究. 岩土力学. 2020(08): 2839-2850 .
    27. 张中流,何宁,何斌,许滨华,姜彦彬. 基于分布式光纤传感技术的结构受力测量新方法. 仪器仪表学报. 2020(09): 45-55 .
    28. 张诚成,施斌,朱鸿鹄,唐朝生. 分布式光纤探测地裂缝的理论基础探讨. 工程地质学报. 2019(06): 1473-1482 .

    Other cited types(9)

Catalog

    Article views (292) PDF downloads (194) Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return