• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhaonan, WANG Gang, JIN Wei. Simulation of backward erosion piping based on coupled material point-characteristic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1318-1324. DOI: 10.11779/CJGE20230207
Citation: WANG Zhaonan, WANG Gang, JIN Wei. Simulation of backward erosion piping based on coupled material point-characteristic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1318-1324. DOI: 10.11779/CJGE20230207

Simulation of backward erosion piping based on coupled material point-characteristic finite element method

More Information
  • Received Date: March 08, 2023
  • Available Online: June 04, 2024
  • The backward erosion piping is a common form of seepage failure in embankments during flood seasons, and it mostly occurs in the dual-structure foundations with unprotected outlet downstream. Due to the high hydraulic gradient of the soil seepage at the water outlet, the soil near the solid-liquid interface is easy to be eroded away. Once there is an impervious clay layer on the upper layer of the eroded soil, a piping channel will be formed to continuously develop to the upstream side, and eventually lead to the instability and failure of the embankment. Based on the coupled material point - characteristic finite element method, a novel modeling approach for the backward erosion piping is developed by employing the local hydraulic gradient as the triggering criterion of piping. The novel approach divides the particles within the solution domain into three types, and deletes the particles that meet the triggering conditions of piping to represent the granular taken away by erosion. Since the fluid phase is described by the generalized Navier-Stokes equation, the proposed approach can simultaneously calculate the seepage of pore water and the free flow of piping channel. Finally, the small-scale erosion experiments are provided to perform the applicability of the proposed approach.
  • [1]
    VAN BEEK V M, BEZUIJEN A, SELLMEIJER J B, et al. Initiation of backward erosion piping in uniform sands[J]. Géotechnique, 2014, 64(12): 927-941. doi: 10.1680/geot.13.P.210
    [2]
    ROBBINS B A, VAN BEEK V M, LÓPEZ-SOTO J F, et al. A novel laboratory test for backward erosion piping[J]. International Journal of Physical Modelling in Geotechnics, 2018, 18(5): 266-279. doi: 10.1680/jphmg.17.00016
    [3]
    VANDENBOER K, DOLPHEN L, BEZUIJEN A. Backward erosion piping through vertically layered soils[J]. European Journal of Environmental and Civil Engineering, 2019, 23(11): 1404-1412. doi: 10.1080/19648189.2017.1373708
    [4]
    ROBBINS B A, MONTALVO-BARTOLOMEI A M, GRIFFITHS D V. Analyses of backward erosion progression rates from small-scale flume experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020093. doi: 10.1061/(ASCE)GT.1943-5606.0002338
    [5]
    VANDENBOER K, VAN BEEK V M, BEZUIJEN A. 3D character of backward erosion piping[J]. Géotechnique, 2018, 68(1): 86-90. doi: 10.1680/jgeot.16.P.091
    [6]
    POL J C, KANNING W, BEEK V M, et al. Temporal evolution of backward erosion piping in small-scale experiments[J]. Acta Geotechnica, 2022, 17(10): 4555-4576. doi: 10.1007/s11440-022-01545-1
    [7]
    AKRAMI S, BEZUIJEN A, VAN BEEK V, et al. Analysis of development and depth of backward erosion pipes in the presence of a coarse sand barrier[J]. Acta Geotechnica, 2021, 16(2): 381-397. doi: 10.1007/s11440-020-01053-0
    [8]
    VANDENBOER K, VAN BEEK V M, BEZUIJEN A. Analysis of the pipe depth development in small-scale backward erosion piping experiments[J]. Acta Geotechnica, 2019, 14(2): 477-486. doi: 10.1007/s11440-018-0667-0
    [9]
    VAN BEEK V M, VAN ESSEN H M, VANDENBOER K, et al. Developments in modelling of backward erosion piping[J]. Géotechnique, 2015, 65(9): 740-754. doi: 10.1680/geot.14.P.119
    [10]
    BRIAUD J L, GOVINDASAMY A V, SHAFII I. Erosion charts for selected geomaterials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(10): 04017072. doi: 10.1061/(ASCE)GT.1943-5606.0001771
    [11]
    周晓杰, 丁留谦, 姚秋玲, 等. 悬挂式防渗墙控制堤基渗透变形发展模型试验[J]. 水力发电学报, 2007, 26(2): 54-59. doi: 10.3969/j.issn.1003-1243.2007.02.011

    ZHOU Xiaojie, DING Liuqian, YAO Qiuling, et al. Laboratory model test for evolution of seepage deformation controlled by means of suspended cut-off wall in foundation of dike[J]. Journal of Hydroelectric Engineering, 2007, 26(2): 54-59. (in Chinese) doi: 10.3969/j.issn.1003-1243.2007.02.011
    [12]
    ZHOU X J, JIE Y X, LI G X. Numerical simulation of the developing course of piping[J]. Computers and Geotechnics, 2012, 44: 104-108. doi: 10.1016/j.compgeo.2012.03.010
    [13]
    FASCETTI A, OSKAY C. Dual random lattice modeling of backward erosion piping[J]. Computers and Geotechnics, 2019, 105: 265-276. doi: 10.1016/j.compgeo.2018.08.018
    [14]
    ROBBINS B A, GRIFFITHS D V. A two-dimensional, adaptive finite element approach for simulation of backward erosion piping[J]. Computers and Geotechnics, 2021, 129: 103820. doi: 10.1016/j.compgeo.2020.103820
    [15]
    LIANG Y, YEH T C J, WANG J J, et al. An auto-adaptive moving mesh method for the numerical simulation of piping erosion[J]. Computers and Geotechnics, 2017, 82: 237-248. doi: 10.1016/j.compgeo.2016.10.011
    [16]
    WANG Y A, NI X D. Hydro-mechanical analysis of piping erosion based on similarity criterion at micro-level by PFC3D[J]. European Journal of Environmental and Civil Engineering, 2013, 17(S1): 187-204.
    [17]
    TRAN D K, PRIME N, FROIIO F, et al. Numerical modelling of backward front propagation in piping erosion by DEM-LBM coupling[J]. European Journal of Environmental and Civil Engineering, 2017, 21(7/8): 960-987.
    [18]
    FROIIO F, CALLARI C, ROTUNNO A F. A numerical experiment of backward erosion piping: kinematics and micromechanics[J]. Meccanica, 2019, 54(14): 2099-2117 doi: 10.1007/s11012-019-01071-7
    [19]
    RAHIMI M, SHAFIEEZADEH A. Coupled backward erosion piping and slope instability performance model for levees[J]. Transportation Geotechnics, 2020, 24: 100394. doi: 10.1016/j.trgeo.2020.100394
    [20]
    ROTUNNO A F, CALLARI C, FROIIO F. A finite element method for localized erosion in porous media with applications to backward piping in levees[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(1): 293-316. doi: 10.1002/nag.2864
    [21]
    FUJISAWA K, MURAKAMI A, NISHIMURA S I. Numerical analysis of the erosion and the transport of fine particles within soils leading to the piping phenomenon[J]. Soils and Foundations, 2010, 50(4): 471-482. doi: 10.3208/sandf.50.471
    [22]
    ZHANG X S, WONG H, LEO C J, et al. A thermodynamics-based model on the internal erosion of earth structures[J]. Geotechnical and Geological Engineering, 2013, 31(2): 479-492. doi: 10.1007/s10706-012-9600-8
    [23]
    WEWER M, AGUILAR-LÓPEZ J P, KOK M, et al. A transient backward erosion piping model based on laminar flow transport equations[J]. Computers and Geotechnics, 2021, 132: 103992. doi: 10.1016/j.compgeo.2020.103992
    [24]
    LEI X Q, HE S M, CHEN X Q, et al. A generalized interpolation material point method for modelling coupled seepage-erosion-deformation process within unsaturated soils[J]. Advances in Water Resources, 2020, 141: 103578. doi: 10.1016/j.advwatres.2020.103578
    [25]
    LIANG D F, ZHAO X Y, SOGA K. Simulation of overtopping and seepage induced dike failure using two-point MPM[J]. Soils and Foundations, 2020, 60(4): 978-988. doi: 10.1016/j.sandf.2020.06.004
    [26]
    CECCATO F, YERRO A, GIRARDI V, et al. Two-phase dynamic MPM formulation for unsaturated soil[J]. Computers and Geotechnics, 2021, 129: 103876. doi: 10.1016/j.compgeo.2020.103876
    [27]
    王兆南, 王刚. 饱和孔隙介质的耦合物质点-特征有限元方法[J]. 岩土工程学报, 2023, 45(5): 1094-1102. doi: 10.11779/CJGE20220332

    WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. (in Chinese) doi: 10.11779/CJGE20220332
    [28]
    ZIENKIEWICZ O C, TAYLOR R L, NITHIARASU P. The Finite Element Method for Fluid Dynamics (Seventh Edition)[M]. Oxford: Butterworth-Heinemann, 2014.
    [29]
    ABAQUS G. Abaqus 6.11[M]. Providence: Dassault Systemes Simulia Corporation, 2011.
    [30]
    ROBBINS B A, VAN BEEK V M, POL J C, et al. Errors in finite element analysis of backward erosion piping[J]. Geomechanics for Energy and the Environment, 2022, 31: 100331. doi: 10.1016/j.gete.2022.100331
  • Related Articles

    [1]ZHAO Futang, WU Qixin, ZHENG Junjie, ZHENG Yewei. Generalized shear strain-based model for development of excess pore water pressure in saturated sand under anisotropic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 315-323. DOI: 10.11779/CJGE20231122
    [2]TANG Zhao-guang, WANG Yong-zhi, WANG Meng-wei, SUN Rui, LIU Yuan-peng, YANG yang. Incremental model for pore water pressure and its applicability in centrifuge modelling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 25-29. DOI: 10.11779/CJGE2022S2006
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]WANG Xiang-ying, LIU Han-long, JIANG Qiang, CHEN Yu-min. Field tests on response of excess pore water pressures of liquefaction resistant rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 645-651. DOI: 10.11779/CJGE201704008
    [5]CAO Zhen-zhong, LIU Hui-da, YUAN Xiao-ming. Liquefaction characteristics and mechanism of gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1165-1174. DOI: 10.11779/CJGE201607001
    [6]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [7]WANG Zhi-hua, LÜ Cong, XU Zhen-wei, ZHOU En-quan, CHEN Guo-xing. Thixotropy induced by vibration pore water pressure of saturated sands under cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1831-1837. DOI: 10.11779/CJGE201410010
    [8]WANG Jun, CAI Yuan-qiang, GUO Lin, YANG Fang. Pore pressure and strain development of Wenzhou saturated soft soil under cyclic loading by stages[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1349-1354.
    [9]WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533.
    [10]CHEN Guoxing, LIU Xuezhu. Study on dynamic pore water pressure in silty clay interbedded with fine sand of Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 79-82.
  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (307) PDF downloads (80) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return