• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Liang, ZHAI Wei, DU Xiu-li. Time-domain explicit finite element method for wave propagation of transversely isotropic fluid-saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 464-476.
Citation: LI Liang, ZHAI Wei, DU Xiu-li. Time-domain explicit finite element method for wave propagation of transversely isotropic fluid-saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 464-476.

Time-domain explicit finite element method for wave propagation of transversely isotropic fluid-saturated porous media

More Information
  • Received Date: July 28, 2011
  • Published Date: March 29, 2012
  • A time-domain explicit finite element method for the elastic wave propagation of transversely isotropic fluid-saturated porous media is put forward. The space decoupling technology is adopted for the space discretization and the time-domain explicit step-by-step calculating format for the time discretization. Using the method, the dynamic response of transversely isotropic fluid-saturated porous media is calculated and analyzed, and the calculated results are compared with those of isotropic fluid-saturated porous media. The effect of the value of anisotropic coefficient on the calculated results of the dynamic response of transversely isotropic fluid-saturated porous media is also studied. The calculated results show that the dynamic response of transversely isotropic fluid-saturated porous media has remarkable difference from that of isotropic fluid-saturated porous media, and the value of anisotropic coefficient has a significant effect on the calculated results of the dynamic response of transversely isotropic fluid-saturated porous media. Meanwhile, the present numerical calculation indicates that the time-domain explicit finite element method is effective for the calculation and analysis of the dynamic response of transversely isotropic fluid-saturated porous media.
  • [1]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid[J]. The Journal of the Acoustical Society of America, 1956, 28 (2): 168 – 191.
    [2]
    GARG S K. Wave propagation effects in a fluid-saturated porous solid[J]. Journal of Geophysical Research, 1971, 76 (32): 7947 – 7962.
    [3]
    ZIENKIEWICZ O C, SHIOMI T. Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8 (1): 71 – 96.
    [4]
    SIMON B R, WU J S S, ZIENKIEWICZ O C. Evaluation of higher order, mixed and Hermitean finite element procedures for dynamic analysis of saturated porous media using one-dimensional models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10 (5): 483 – 499.
    [5]
    PREVOST J H. Wave propagation in fluid-saturated porous media: an efficient finite element procedure[J]. Soil Dynamics and Earthquake Engineering, 1985, 4 (4): 183 – 202.
    [6]
    赵成刚 , 王进廷 , 史培新 , 等 . 流体饱和两相多孔介质动力反应分析的显式有限元法 [J]. 岩土工程学报 , 2001, 23 (2): 178 – 182. (ZHAO Cheng-gang, WANG Jin-ting, SHI Pei-xin, et al. Dynamic analysis of fluid-saturated porous media by using explicit finite element method[J]. Chinese Journal of Geotechnical Engineering, 2001, 23 (2): 178 – 182. (in Chinese))
    [7]
    王进廷 , 杜修力 , 赵成刚 . 液固两相饱和介质动力分析的一种显式有限元法 [J]. 岩石力学与工程学报 , 2002, 21 (8): 1199 – 1204. (WANG Jin-ting, DU Xiu-li, ZHAO Cheng-gang. Explicit finite element method for dynamic analysis of fluid-saturated porous solid[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21 (8): 1199 – 1204. (in Chinese))
    [8]
    DOMINGUEZ J. Boundary element approach for dynamic poroelastic problems[J]. International Journal for Numerical Methods in Engineering, 1992, 35 (2): 307 – 324.
    [9]
    KHALILI N, YAZDCHI M, VALLIAPPAN S. Wave propagation analysis of two-phase saturated porous media using coupled finite-infinite element method[J]. Soil Dynamics and Earthquake Engineering, 1999, 18 (8): 533 – 553.
    [10]
    张洪武 , 王组鹏 , 陈 震 . 基于物质点方法饱和多孔介质动力学模拟( I )——耦合物质点方法 [J]. 岩土工程学报 , 2009, 31 (10): 1505 – 1511. (ZHANG Hong-wu, WANG Kun-peng, CHEN Zhen. Material point method for dynamic analysis of saturated porous media(I): coupling material point method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (10): 1505 – 1511. (in Chinese))
    [11]
    张新明 , 刘克安 , 刘家琦 . 流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法 [J]. 地球物理学报 , 2005, 48 (5): 1156 – 1166. (ZHANG Xin-ming, LIU Ke-an, LIU Jia-qi. A wavelet finite element method for the 2-D wave equation in fluid-saturated porous media[J]. Chinese Journal of Geophysics, 2005, 48 (5): 1156 – 1166. (in Chinese))
    [12]
    贺 英 , 韩 波 . 流体饱和多孔隙介质波动方程小波有限差分法 [J]. 应用数学和力学 , 2008, 29 (11): 1355 – 1364. (HE Ying, HAN Bo. Wavelet finite-difference method for the numerical simulation of wave propagation in fluid-saturated porous media[J]. Applied Mathematics and Mechanics, 2008, 29 (11): 1355 – 1364. (in Chinese))
    [13]
    胡亚元 . 横观各向同性饱和土中波的传播 [D]. 杭州 : 浙江大学 , 1998. (HU Ya-yuan. Wave propagation in transversely isotropic fluid-saturated porous media[D]. Hangzhou: Zhejiang University, 1998. (in Chinese))
    [14]
    王勖成 , 邵 敏 . 有限单元法基本原理和数值方法 [M]. 第二版 . 北京 : 清华大学出版社 , 1997. (WANG Xu-cheng , SHAO Min. The basic theory and numerical method of finite element method[M]. 2nd edition. Beijing: Press of Tsinghua University, 1997. (in Chinese))
  • Related Articles

    [1]LEI Guo-hui, GAO Xiang, XU Ke, ZHENG Ze-yu. Behavior of undrained shear strength of saturated soft clay under consolidation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 41-49. DOI: 10.11779/CJGE201901004
    [2]DANG Fa-ning, LIU Hai-wei, WANG Xue-wu. Application of bamboo as tensile reinforcement to strengthening of embankment of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 44-48.
    [3]LIU Hongjun, TAO Xiaxin. Consolidation settlement characteristics of soft foundation in seasonal frozen swamp regions[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1354-1360.
    [4]WANG Lizhong, SHEN Kailun. Rotational hardening law of K0 consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 863-872.
    [5]WANG Lizhong, DAN Hanbo. Elastic viscoplastic constitutive model for K0-consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1344-1354.
    [6]RUI Rui, XIA Yuanyou. Numerical simulation and comparison of pile-net composite foundation with pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 769-772.
    [7]WANG Lizhong, SHEN Kailun. A constitutive model of K0 consolided structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 496-504.
    [8]WANG Lizhong, YE Shenghua, SHEN Kailun, HU Yayuan. Undrained shear strength of K0 consolidated soft clays[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 970-977.
    [9]NIE Rusong, LENG Wuming, LV Wentian. Experimental study on lateral influence of embankment construction on piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1487-1490.
    [10]Xie Yongli, Pan Qiuyuan, Zeng Guoxi. Study on Deformation Behavior of Soft Clay Ground with centrifugal Model Test[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(4): 45-50.

Catalog

    Article views (1602) PDF downloads (516) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return