• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Cheng, GUO Wei, REN Yu-xiao. Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 135-140. DOI: 10.11779/CJGE2020S2024
Citation: CHEN Cheng, GUO Wei, REN Yu-xiao. Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 135-140. DOI: 10.11779/CJGE2020S2024

Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • It is a common engineering method to improve the subgrade soils in seasonal frozen soil areas. Lignin fiber is an economical and environmentally friendly additive with good durability. Taking the soils improved by the lignin fiber as the research object, the UU triaxial tests and SEM scanning tests are carried out on the soil samples with different contents of lignin fiber after freeze-thaw cycles. The influences of the times of freeze-thaw cycles and the content of fiber on the mechanical properties of the soils are analyzed emphatically. The results show that the characteristics of stress-strain curve are related to confining pressure, freeze-thaw times and lignin fiber content. The elastic modulus, strength and cohesion of the reinforced soils decrease with the increase of freeze-thaw cycles. Under the lignin fiber content of 0.75%, the elastic modulus, strength and cohesion of the reinforced soils reach the maximum. The fiber forms a three-dimensional grid structure in the soil samples or plays a role of "bridge" overlapping, which reduces the impact of freeze-thaw on the pore damage, thus enhancing the strength of the soils. The test results show that the reinforced soils with lignin fiber have obvious advantages in resisting repeated freeze-thaw cycles.
  • [1]
    LU Z, XIAN S, YAO H, et al. Influence of freeze-thaw cycles in the presence of a supplementary water supply on mechanical properties of compacted soil[J]. Cold Regions Science and Technology, 2019(157): 42-52.
    [2]
    张艳军, 于沉香, 凌飞, 等. 石棉纤维粉煤灰水泥改良软土试验研究[J]. 工程地质学报, 2015, 23(5): 982-988.

    ZHANG Yan-jun, YU Chen-xiang, LING Fei, et al. Experimental study on asbestos fiber reinforced fly ash soil-cement for soft soil enhancement[J]. Journal of Engineering Geology, 2015, 23(5): 982-988. (in Chinese)
    [3]
    GHAZAVI M, ROUSTAEI M. Freeze-thaw performance of clayey soil reinforced with geotextile layer[J]. Cold Regions Science and Technology, 2013(89): 22-29.
    [4]
    KRAVCHENKO E, LIU J, NIU W, et al. Performance of clay soil reinforced with fibers subjected to freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018(153): 18-24.
    [5]
    OLGUN M. The effects and optimization of additives for expansive clays under freeze-thaw conditions[J]. Cold Regions Science and Technology, 2013(93): 36-46.
    [6]
    ESKIŞAR T, ALTUN S, KALIPCILAR İ. Assessment of strength development and freeze-thaw performance of cement treated clays at different water contents[J]. Cold Regions Science and Technology, 2015(111): 50-59.
    [7]
    HOTINEANU A, BOUASKER M, ALDAOOD A, et al. Effect of freeze-thaw cycling on the mechanical properties of lime-stabilized expansive clays[J]. Cold Regions Science and Technology, 2015(119): 151-157.
    [8]
    杨晴雯, 裴向军, 黄润秋. 改性钠羧甲基纤维素改良土冻融性能及损伤机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3102-3113. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1051.htm

    YANG Qing-wen, PEI Xiang-jun, HUANG Run-qiu. Research on the effect of freeze and thaw cycles on the property and damage mechanism of M-CMC stabilized soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3102-3113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1051.htm
    [9]
    LI L, SHAO W, LI Y, et al. Effects of climatic factors on mechanical properties of cement and fiber reinforced clays[J]. Geotechnical and Geological Engineering, 2015, 33(3): 537-548. doi: 10.1007/s10706-014-9838-4
    [10]
    齐吉琳, 马巍. 冻融作用对超固结土强度的影响[J]. 岩土工程学报, 2006, 28(12): 2082-2086. doi: 10.3321/j.issn:1000-4548.2006.12.007

    QI Ji-lin, MA Wei. Influence of freezing-thawing on strength of over- onsolidated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2082-2086. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.12.007
    [11]
    LIU C, TANG C, SHI B, et al. Automatic quantification of crack patterns by image processing[J]. Computers and Geosciences, 2013(57): 77-80.
    [12]
    LEE W, BOHRA N C, ALTSCHAEFFL A G, et al. Resilient modulus of cohesive soils and the effect of freeze-thaw[J]. Can Geotech J, 1995, 32(4): 559-568.
  • Related Articles

    [1]An experimental study of micro-scale hydro-mechanical characteristic of unsaturated granular materials based on in-situ triaxial CT scanning test[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240074
    [2]WANG Qian, WANG Lanmin, LIU Zhaozhao, ZHONG Xiumei, GAO Zhongnan. Engineering properties and reinforcement mechanism of lignin-modified loess[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 150-154, 215. DOI: 10.11779/CJGE2024S20022
    [3]LIU Jin, CHE Wenyue, HAO Shefeng, MA Xiaofan, YU Yongxiang, WANG Ying, CHEN Zhihao, LI Wanwan, QIAN Wei. Deterioration mechanism of mechanical properties and microstructure in xanthan gum-reinforced soil under wetting-drying cycles based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126. DOI: 10.11779/CJGE20230165
    [4]WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331
    [5]ZHANG He-nian, CHEN Liang, LI Xiong-wei, XI Pei-sheng, MU Lin, HU Cai-yun. Ratio and mechanism of activated magnesium oxide carbonized raw earth block materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 233-236. DOI: 10.11779/CJGE2021S2055
    [6]HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005
    [7]SHEN Zhi-fu, SUN Tian-you, BAI Yu-fan, JIANG Ming-jing, ZHOU Feng. Extraction method for micro-structure parameters of clay based on imaging principles of scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 933-939. DOI: 10.11779/CJGE202105018
    [8]ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011
    [9]FENG Huai-ping, MA De-liang, LIU Qi-yuan, YE Chao-liang. Method for calculating three dimensional apparent porosity of soils based on SEM images[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 574-580. DOI: 10.11779/CJGE201903021
    [10]AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
  • Cited by

    Periodical cited type(19)

    1. 王浩,付德伟,郭剑波,晏田田,宋昊明. 黄原胶和木质素纤维改良粉砂土抗压强度特性及微观机理分析. 科学技术与工程. 2025(04): 1602-1612 .
    2. 童小东,陈文义,慈祥,孙任运,黎冰. 生物高分子聚合物固化沙漠砂室内试验研究. 工程力学. 2025(03): 68-76 .
    3. 尹晓雯. 冻融循环下纤维-造纸废物联合改良淤泥质土力学性能研究. 粘接. 2024(02): 139-142 .
    4. 朱锐,王燕杰,黄英豪,张文,邢玮,周峰. 木质素纤维改良膨胀土的冻融特性及微观机理. 农业工程学报. 2024(02): 263-272 .
    5. 周恩全,张曼,居东煜,王龙,李护良. 干湿循环下木质素改良粉土抗剪强度特性. 工程科学与技术. 2024(02): 208-216 .
    6. 魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 .
    7. 徐鑫,于忠禹,牛岑岑,苑晓青,雷浩民. 双聚合物改良分散性土的力学特性及机制研究. 广西大学学报(自然科学版). 2024(03): 490-502 .
    8. 朱怀太,欧尔峰,姜琪,赵永春,赵建沅. 冻融作用下复合相变材料改良黄土力学特性研究及机理分析. 防灾减灾工程学报. 2024(03): 715-724 .
    9. 何菲,雷婉玉,岳亚强,毛尔清,刘清泉,王旭. 基于CiteSpace知识图谱的冻土路基研究现状与趋势分析. 冰川冻土. 2024(03): 891-908 .
    10. 李琦峰,邢峥光,党冰,彭尔兴,胡晓莹. 木质素纤维-MICP固化粉土在冻融循环作用下的力学性能研究. 冰川冻土. 2024(06): 1828-1838 .
    11. 徐亚利,吴先锋. 纤维加筋土力学性能与耐久性能研究进展. 长春工程学院学报(自然科学版). 2024(04): 16-21 .
    12. 任昆,于泽宁,石孟奇. 冻融条件下水泥煤渣改良土非均匀损伤特性. 铁道工程学报. 2023(07): 15-19+26 .
    13. 董超凡,张吾渝,孙翔龙,解邦龙. 木质素纤维改良黄土抗剪强度的试验研究. 安全与环境工程. 2022(02): 102-110 .
    14. 彭丽云,华小宁,刘德欣,齐吉琳. 秸秆加筋粉土的冻胀特性研究. 冰川冻土. 2022(01): 241-250 .
    15. 董超凡,林城,张吾渝,孙翔龙,黄雨灵. 寒旱区木质素纤维改良黄土的热学与力学性质研究. 干旱区资源与环境. 2022(05): 119-126 .
    16. 董超凡,张吾渝,张瑞星,黄雨灵,高英. 冻融作用下木质素纤维改良黄土力学与热学特性试验研究. 冰川冻土. 2022(02): 612-622 .
    17. 阮波,袁忠正,张佳森,郑世龙,张向京,聂如松. 养护条件对纤维水泥改良风积沙强度及微观结构影响. 铁道科学与工程学报. 2022(06): 1594-1604 .
    18. 柴寿喜,张琳,魏丽,田萌萌. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构. 水文地质工程地质. 2022(05): 96-105 .
    19. 程卓,崔高航,高原昊,刚浩航,高泽宁,杨政,张鑫. 季冻区粉煤灰加固路基土力学性能试验研究. 硅酸盐通报. 2021(11): 3854-3864+3875 .

    Other cited types(33)

Catalog

    Article views (252) PDF downloads (93) Cited by(52)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return