• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011
Citation: ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011

Experimental study on microstructure and compressibility of iron ore tailings

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • A series of compression tests are conducted on iron ore tailings taken from Qingshan tailings impoundment to analyze the compression deformation behavior. Furthermore, the scanning electron microscopy (SEM) tests and mercury intrusion porosimetry (MIP) tests are carried out on post-test specimens to study the effects of microstructure on compression deformation properties of iron ore tailings. The compression test results show that the iron ore tailings exhibit basically consistent compression behavior during uniaxial compression and isotropic compression. Different initial dry densities are found to have few effects on the shape and slope of compression curve but change the initial void ratio. The specimens with single size gradation show stronger compressibility than those with design size gradation. The microscopic tests results show that pore structure of the iron ore tailings is various and complicated, and the pore sizes are mainly distributed in the interval of 10 to 0.1 μm. Both the initial dry density and the consolidation pressure affect the total porosity of the iron ore tailings, and the later one has more severe effect. The research results may provide reference for the design, operation and maintenance of tailings impoundment.
  • [1]
    陈生水. 尾矿库安全评价存在的问题与对策[J]. 岩土工程学报, 2016, 38(10): 1869-1873. doi: 10.11779/CJGE201610016

    CHEN Sheng-shui. Problems and countermeasures of safety evaluation of tailing pond[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1869-1873. (in Chinese) doi: 10.11779/CJGE201610016
    [2]
    LI W, COOP M. Mechanical behaviour of Panzhihua iron tailings[J]. Canadian Geotechnical Journal, 2019, 56(3): 420-435. doi: 10.1139/cgj-2018-0032
    [3]
    SIMMS P. 2013 colloquium of the Canadian Geotechnical Society: Geotechnical and geoenvironmentalbehaviour of high-density tailings[J]. Canadian Geotechnical Journal, 2017, 54(4): 455-468. doi: 10.1139/cgj-2015-0533
    [4]
    HU L, WU H, ZHANG L, et al. Geotechnical properties of mine tailings[J]. Journal of Materials in Civil Engineering, 2016, 29(2): 1-10.
    [5]
    CHANG N, HEYMANNG , CLAYTON C. The effect of fabric on the behaviour of gold tailings[J]. Géotechnique, 2011, 61(3): 187-97. doi: 10.1680/geot.9.P.066
    [6]
    FOURIE A, PAPAGEORGIOU G. Defining an appropriate steady state line for Merriespruit gold tailings[J]. Canadian Geotechnical Journal, 2001, 38(8): 695-706.
    [7]
    巫尚蔚, 杨春和, 张超, 等. 粉粒含量对尾矿力学特性的影响[J]. 岩石力学与工程学报, 2017, 36(8): 2007-2017.

    WU Shang-wei, YANG Chun-he, ZHANG Chao, et al. The effects of silt content on the mechanical properties of tailings[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2007-2017. (in Chinese)
    [8]
    乔兰, 屈春来, 崔明. 细粒含量对尾矿工程性质影响分析[J]. 岩土力学, 2015, 36(4): 923-927.

    QIAO Lan, QU Chun-lai, CUI Ming. Effect of fines content on engineering characteristics of tailings[J]. Rock and Soil Mechanics, 2015, 36(4): 923-927. (in Chinese)
    [9]
    CARRERA A, COOP M, LANCELLOTTA R. Influence of grading on the mechanical behaviour of Stava tailings[J]. Géotechnique, 2011, 61(11): 935-946. doi: 10.1680/geot.9.P.009
    [10]
    巫尚蔚, 杨春和, 胡晓明, 等. 尾矿颗粒性质与压缩固结特性的关联性研究[J]. 华中科技大学学报(自然科学版), 2017, 45(11): 121-126.

    WU Shang-wei, YANG Chun-he, HU Xiao-ming, et al. Research on correlation of tailings particle properties and compression consolidation properties[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(11): 121-126. (in Chinese)
    [11]
    AHMED S, SIDDIQUA S. A review on consolidation behavior of tailings[J]. International Journal of Geotechnical Engineering, 2014, 8(1): 102-111. doi: 10.1179/1939787913Y.0000000012
    [12]
    唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560-565.

    TANG Chao-sheng, SHI Bin, WANG Bao-jun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565. (in Chinese)
    [13]
    Lapierre Clément, Leroueil Serge, Locat Jacques. Mercury intrusion and permeability of Louiseville clay[J]. Canadian Geotechnical Journal, 1990, 27(6): 761-773.
    [14]
    OUALMAKRAN M, MERCATORIS B, FRANCOIS B. Pore-size distribution of a compacted silty soil after compaction, saturation, and loading[J]. Canadian Geotechnical Journal, 2016, 53(12): 1902-1909.
    [15]
    张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013, 34(增刊2): 134-142.

    ZHANG Xian-wei, KONG Ling-wei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013, 34(S2): 134-142. (in Chinese)
    [16]
    土工试验规程:SL237—1999[S]. 北京: 中国水利水电出版社, 1999.

    Specification for Soil Tests: SL237—1999[S]. Beijing: China Water & Power Press, 1999. (in Chinese)
    [17]
    李育, 周雪花, 李卓仑, 等. 基于扫描电镜分析的猪野泽全新世砂层成因探讨[J]. 沉积学报, 2013, 31(1): 149-156.

    LI Yu, ZHOU Xue-hua, LI Zhuo-lun, et al. Formation of holocene sand layers by sem analyses in the zhuye lake sediments[J]. ACTA Sedimentologica Sinica, 2013, 31(1): 149-156. (in Chinese)
  • Related Articles

    [1]WANG Cai-jin, ZHANG Tao, LUO Jun-hui, MA Chong, DUAN Long-chen. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109-112. DOI: 10.11779/CJGE2019S2028
    [2]LIU Huanyu, WANG Sijing, ZENG Qianbang, HU Bo, XIA Zhengyi. Judgment for non-mining fracture of shaft-lining in Yanzhou mine based on fuzzy neural network[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1237-1240.
    [3]DING Dexin, ZHANG Zhijun. Application of ANFIS-based approach for back analysis of displacements in Xiangxi gold mine[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1123-1128.
    [4]ZHU Qingjie, MA Yajie, CHEN Yanhua. Evaluation of regional crust based on ANN[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1105-1109.
    [5]DING Dexin, ZHANG Zhijun. Study on ANFIS-based approach for inverse design of with circular failure surface sliding slopes[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 202-206.
    [6]CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232.
    [7]ZHU Chuanqu, MIAO Xiexing, XIE Donghai. A model for optimization of support patterns of soft rock roadway based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 708-710.
    [8]WANG Shuhong, HAO Zhe. The genetic algorithm-neural network method to forecast the miniature crack grouting in rock matrix[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 572-575.
    [9]WANG Lianguo, SONG Yang. Combined ANN forecast of water-inrush from coal floor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 502-505.
    [10]SUN Jun, YUAN Jinrong. Soil disturbance and ground movement under shield tunnelling and its intelligent prediction by using ANN technology[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 261-267.
  • Cited by

    Periodical cited type(9)

    1. 杨泽华,张高才,江帆,罗佳湘,张超. 不同水因素影响下土石混填体承载力学特性研究. 公路. 2024(06): 28-35 .
    2. 任明辉,赵光思,浦海,尹乾,王涛. 无黏性松散土石混合体剪切特性的结构效应及强度模型构建. 岩石力学与工程学报. 2024(07): 1707-1721 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. Zhou Wei,Hou Tianshun,Chen Ye,Wang Qi,Luo Yasheng,Zhang Yafei. Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method. Earthquake Engineering and Engineering Vibration. 2024(04): 815-828 .
    5. 王治林,郑明明,夏敏,熊亮,吴祖锐,王凯. 不同边界对花岗岩三轴试验影响的三维离散元数值研究. 钻探工程. 2023(01): 150-158 .
    6. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    7. 蒋成龙,许成顺,张小玲,王晓丽. 三维柔性边界构建方法及其对砾质土变形发展影响的离散元数值研究. 土木工程学报. 2021(05): 77-86 .
    8. 王恒通,王家全,唐毅,黄文勤. 组合Clump颗粒加筋砂土三轴剪切试验离散元模拟分析. 广西科技大学学报. 2021(03): 34-41 .
    9. 张强,汪小刚,赵宇飞,周家文,孟庆祥,周梦佳. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究. 岩土工程学报. 2019(08): 1545-1554 . 本站查看

    Other cited types(26)

Catalog

    Article views PDF downloads Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return