• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011
Citation: ZHANG Yi-jiang, CHEN Sheng-shui, FU Zhong-zhi. Experimental study on microstructure and compressibility of iron ore tailings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 61-66. DOI: 10.11779/CJGE2020S2011

Experimental study on microstructure and compressibility of iron ore tailings

More Information
  • Received Date: August 06, 2020
  • Available Online: December 07, 2022
  • A series of compression tests are conducted on iron ore tailings taken from Qingshan tailings impoundment to analyze the compression deformation behavior. Furthermore, the scanning electron microscopy (SEM) tests and mercury intrusion porosimetry (MIP) tests are carried out on post-test specimens to study the effects of microstructure on compression deformation properties of iron ore tailings. The compression test results show that the iron ore tailings exhibit basically consistent compression behavior during uniaxial compression and isotropic compression. Different initial dry densities are found to have few effects on the shape and slope of compression curve but change the initial void ratio. The specimens with single size gradation show stronger compressibility than those with design size gradation. The microscopic tests results show that pore structure of the iron ore tailings is various and complicated, and the pore sizes are mainly distributed in the interval of 10 to 0.1 μm. Both the initial dry density and the consolidation pressure affect the total porosity of the iron ore tailings, and the later one has more severe effect. The research results may provide reference for the design, operation and maintenance of tailings impoundment.
  • [1]
    陈生水. 尾矿库安全评价存在的问题与对策[J]. 岩土工程学报, 2016, 38(10): 1869-1873. doi: 10.11779/CJGE201610016

    CHEN Sheng-shui. Problems and countermeasures of safety evaluation of tailing pond[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1869-1873. (in Chinese) doi: 10.11779/CJGE201610016
    [2]
    LI W, COOP M. Mechanical behaviour of Panzhihua iron tailings[J]. Canadian Geotechnical Journal, 2019, 56(3): 420-435. doi: 10.1139/cgj-2018-0032
    [3]
    SIMMS P. 2013 colloquium of the Canadian Geotechnical Society: Geotechnical and geoenvironmentalbehaviour of high-density tailings[J]. Canadian Geotechnical Journal, 2017, 54(4): 455-468. doi: 10.1139/cgj-2015-0533
    [4]
    HU L, WU H, ZHANG L, et al. Geotechnical properties of mine tailings[J]. Journal of Materials in Civil Engineering, 2016, 29(2): 1-10.
    [5]
    CHANG N, HEYMANNG , CLAYTON C. The effect of fabric on the behaviour of gold tailings[J]. Géotechnique, 2011, 61(3): 187-97. doi: 10.1680/geot.9.P.066
    [6]
    FOURIE A, PAPAGEORGIOU G. Defining an appropriate steady state line for Merriespruit gold tailings[J]. Canadian Geotechnical Journal, 2001, 38(8): 695-706.
    [7]
    巫尚蔚, 杨春和, 张超, 等. 粉粒含量对尾矿力学特性的影响[J]. 岩石力学与工程学报, 2017, 36(8): 2007-2017.

    WU Shang-wei, YANG Chun-he, ZHANG Chao, et al. The effects of silt content on the mechanical properties of tailings[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2007-2017. (in Chinese)
    [8]
    乔兰, 屈春来, 崔明. 细粒含量对尾矿工程性质影响分析[J]. 岩土力学, 2015, 36(4): 923-927.

    QIAO Lan, QU Chun-lai, CUI Ming. Effect of fines content on engineering characteristics of tailings[J]. Rock and Soil Mechanics, 2015, 36(4): 923-927. (in Chinese)
    [9]
    CARRERA A, COOP M, LANCELLOTTA R. Influence of grading on the mechanical behaviour of Stava tailings[J]. Géotechnique, 2011, 61(11): 935-946. doi: 10.1680/geot.9.P.009
    [10]
    巫尚蔚, 杨春和, 胡晓明, 等. 尾矿颗粒性质与压缩固结特性的关联性研究[J]. 华中科技大学学报(自然科学版), 2017, 45(11): 121-126.

    WU Shang-wei, YANG Chun-he, HU Xiao-ming, et al. Research on correlation of tailings particle properties and compression consolidation properties[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(11): 121-126. (in Chinese)
    [11]
    AHMED S, SIDDIQUA S. A review on consolidation behavior of tailings[J]. International Journal of Geotechnical Engineering, 2014, 8(1): 102-111. doi: 10.1179/1939787913Y.0000000012
    [12]
    唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4): 560-565.

    TANG Chao-sheng, SHI Bin, WANG Bao-jun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565. (in Chinese)
    [13]
    Lapierre Clément, Leroueil Serge, Locat Jacques. Mercury intrusion and permeability of Louiseville clay[J]. Canadian Geotechnical Journal, 1990, 27(6): 761-773.
    [14]
    OUALMAKRAN M, MERCATORIS B, FRANCOIS B. Pore-size distribution of a compacted silty soil after compaction, saturation, and loading[J]. Canadian Geotechnical Journal, 2016, 53(12): 1902-1909.
    [15]
    张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013, 34(增刊2): 134-142.

    ZHANG Xian-wei, KONG Ling-wei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013, 34(S2): 134-142. (in Chinese)
    [16]
    土工试验规程:SL237—1999[S]. 北京: 中国水利水电出版社, 1999.

    Specification for Soil Tests: SL237—1999[S]. Beijing: China Water & Power Press, 1999. (in Chinese)
    [17]
    李育, 周雪花, 李卓仑, 等. 基于扫描电镜分析的猪野泽全新世砂层成因探讨[J]. 沉积学报, 2013, 31(1): 149-156.

    LI Yu, ZHOU Xue-hua, LI Zhuo-lun, et al. Formation of holocene sand layers by sem analyses in the zhuye lake sediments[J]. ACTA Sedimentologica Sinica, 2013, 31(1): 149-156. (in Chinese)

Catalog

    Article views (192) PDF downloads (77) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return