Citation: | LIU Jin, CHE Wenyue, HAO Shefeng, MA Xiaofan, YU Yongxiang, WANG Ying, CHEN Zhihao, LI Wanwan, QIAN Wei. Deterioration mechanism of mechanical properties and microstructure in xanthan gum-reinforced soil under wetting-drying cycles based on CT scanning technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 1119-1126. DOI: 10.11779/CJGE20230165 |
[1] |
CHANG I, PRASIDHI A K, IM J, et al. Soil strengthening using thermo-gelation biopolymers[J]. Construction and Building Materials, 2015, 77: 430-438. doi: 10.1016/j.conbuildmat.2014.12.116
|
[2] |
张俊然, 赵鑫鑫, 姜彤. 3种生物聚合物改良粉土的持水特性研究[J]. 岩土力学, 2022, 43(8): 2157-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202208010.htm
ZHANG Junran, ZHAO Xinxin, JIANG Tong. Water retention characteristics of silt improved by three types of biopolymer[J]. Rock and Soil Mechanics, 2022, 43(8): 2157-2164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202208010.htm
|
[3] |
STOLTZ G, CUISINIER O, MASROURI F. Weathering of a lime-treated clayey soil by drying and wetting cycles[J]. Engineering Geology, 2014, 181: 281-289. doi: 10.1016/j.enggeo.2014.08.013
|
[4] |
CHANG I, IM J, LEE S W, et al. Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying[J]. Construction and Building Materials, 2017, 143: 210-221. doi: 10.1016/j.conbuildmat.2017.02.061
|
[5] |
宋泽卓, 郝社锋, 梅红, 等. 干湿循环条件下生物聚合物改良砂土强度特性[J]. 复合材料学报, 2023, 40(4): 2285-2295. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202304039.htm
SONG Zezhuo, HAO Shefeng, MEI Hong, et al. Strength characteristics of biopolymer modified sand under dry-wet cycle[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2285-2295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202304039.htm
|
[6] |
蒋明镜. 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001
JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001
|
[7] |
沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.
SHEN Zhujiang. Theoretical Soil Mechanics[M]. Beijing: China Water & Power Press, 2000. (in Chinese)
|
[8] |
王艳丽, 程展林. CT扫描技术在我国土工试验中的应用研究进展[J]. 地震工程学报, 2015, 37(增刊1): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ2015S1008.htm
WANG Yanli, CHENG Zhanlin. Progress in the application of CT scanning technology in Chinese soil tests[J]. China Earthquake Engineering Journal, 2015, 37(S1): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ2015S1008.htm
|
[9] |
MOSCARIELLO M, CUOMO S, SALAGER S. Capillary collapse of loose pyroclastic unsaturated sands characterized at grain scale[J]. Acta Geotechnica, 2018, 13(1): 117-133. doi: 10.1007/s11440-017-0603-8
|
[10] |
QIAO J B, LIU X T, ZHU Y J, et al. Three-dimensional quantification of soil pore structure in wind-deposited loess under different vegetation types using industrial X-ray computed tomography[J]. CATENA, 2021, 199: 105098. doi: 10.1016/j.catena.2020.105098
|
[11] |
MENG Y H, WANG Q, SU W, et al. Experimental evidence on the cracking and sealing mechanisms of compacted bentonite by using microfocus X-ray computed tomography[J]. Engineering Geology, 2023, 322: 107153. doi: 10.1016/j.enggeo.2023.107153
|
[12] |
ZAIDI M, AHFIR N D, ALEM A, et al. Use of X-ray computed tomography for studying the desiccation cracking and self-healing of fine soil during drying-wetting paths[J]. Engineering Geology, 2021, 292: 106255. doi: 10.1016/j.enggeo.2021.106255
|
[13] |
MA R M, CAI C F, LI Z X, et al. Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography[J]. Soil and Tillage Research, 2015, 149: 1-11. doi: 10.1016/j.still.2014.12.016
|
[14] |
蔡正银, 朱洵, 黄英豪, 等. 冻融过程对膨胀土裂隙演化特征的影响[J]. 岩土力学, 2019, 40(12): 4555-4563. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912001.htm
CAI Zhengyin, ZHU Xun, HUANG Yinghao, et al. Influences of freeze-thaw process on evolution characteristics of fissures in expensive soils[J]. Rock and Soil Mechanics, 2019, 40(12): 4555-4563. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912001.htm
|
[15] |
AN R, KONG L W, ZHANG X W, et al. Effects of dry-wet cycles on three-dimensional pore structure and permeability characteristics of granite residual soil using X-ray micro computed tomography[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 851-860. doi: 10.1016/j.jrmge.2021.10.004
|
[16] |
毛灵涛, 连秀云, 郝丽娜. 基于数字体图像三维裂隙的分形计算及应用[J]. 中国矿业大学学报, 2014, 43(6): 1134-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201406027.htm
MAO Lingtao, LIAN Xiuyun, HAO Lina. The fractal calculation of 3Dcracks based on digital volumetric images and its application[J]. Journal of China University of Mining & Technology, 2014, 43(6): 1134-1139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201406027.htm
|
[17] |
CHEN C H, WU L, HARBOTTLE M. Exploring the effect of biopolymers in near-surface soils using xanthan gum-modified sand under shear[J]. Canadian Geotechnical Journal, 2020, 57(8): 1109-1118. doi: 10.1139/cgj-2019-0284
|
[1] | FENG Huai-ping, MA De-liang, WANG Zhi-peng, CHANG Jian-mei. Measurement of resistivity of unsaturated soils using van der Pauw method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 690-696. DOI: 10.11779/CJGE201704014 |
[2] | LIU Song-yu, BIAN Han-liang, CAI Guo-jun, CHU Ya. Influences of water and oil two-phase on electrical resistivity of oil-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 170-177. DOI: 10.11779/CJGE201701016 |
[3] | LIU Ting-fa, NIE Yan-xia, HU Li-ming, ZHOU Qi-you, WEN Qing-bo. Model tests on moisture migration based on high-density electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 761-768. DOI: 10.11779/CJGE201604023 |
[4] | ZHAO Yan-ru, CHEN Xiang-sheng, HUANG Li-ping, ZHOU Zhong-hua, XIE Qiang. Experimental study on electrical resistivity of municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2205-2216. DOI: 10.11779/CJGE201512010 |
[5] | GUO Xiu-jun, WU Shui-juan, MA Yuan-yuan. Quantitative investigation of landfill-leachate contaminated sand soil with electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2066-2071. |
[6] | LIU Bin, NIE Li-chao, LI Shu-cai, LI Li-ping, SONG Jie, LIU Zheng-yu. Numerical forward and model tests of water inrush real-time monitoring in tunnels based on electrical resistivity tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035. |
[7] | Numerical modeling of direct current electrical resistivity with 3D FEM based on PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1846-1855. |
[8] | ZHA Fusheng, LIU Songyu, DU Yanjun, CUI Kerui. Quantitative research on microstructures of expansive soils during swelling using electrical resistivity measurements[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(12): 1832-1839. |
[9] | HAN Lihua, LIU Songyu, DU Yanjun. New method for testing contaminated soil——electrical resistivity method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1028-1032. |
[10] | SUN Yue. Numerical analysis for three-dimensional resistivity model by using finite element/infinite element methods[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 733-737. |