• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Chun, XU Qiang, SHI Bin, GU Ying-fan. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018
Citation: LIU Chun, XU Qiang, SHI Bin, GU Ying-fan. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018

Digital image recognition method of rock particle and pore system and its application

More Information
  • Revised Date: February 05, 2017
  • Published Date: May 24, 2018
  • The thin-section micro images of sandstone are used as an example to investigate the image recognition, quantification and statistical analysis methods for rock particle and pore system. A binary image is obtained by using multi-color segmentation and spot removal operations. An improved seed algorithm is proposed, by which the pore throats with certain diameter can be closed automatically so as to divide and identify different pores and particles. A probability statistical method is introduced to calculate a three-dimensional sorting coefficient based on two-dimensional particle areas. The probability entropy and fractal dimension are used to describe the directionality and the variation of shape complexity, respectively. On the basis of theoretical researches, the software “Pore (Particle) and cracks analysis system” (PCAS) is developed. In the example, PCAS is applied in the investigation of formation mechanism of compaction bands in porous sandstone. The image processing results show that: (1) The particles and pores are recognized and quantified accurately, and micro structures of different sandstone can be described and distinguised effectively by using the statistical parameters; (2) In comparison with that with chevron compaction bands, the host rock with straight compaction bands has greater porosity, average pore area and better grain sorting. The research indicates the formation of compaction bands in sandstone is closely related to the micro structures, and the recognition and the analysis methods of micro structures are reliable.
  • [1]
    徐文杰, 岳中琦, 胡瑞林. 基于数字图像的土、岩和混凝土内部结构定量分析和力学数值计算的研究进展[J]. 工程地质学报, 2007, 15(3): 289-313. (XU Wen-jie, YUE Zhong-qi, HU Rui-lin. Current status of digital image based quantitative analysis of internal structures of soils, rocks and concretes and associated numerical simulation[J]. Journal of Engineering Geology, 2007, 15(3): 289-313. (in Chinese))
    [2]
    彭瑞东, 杨彦从, 鞠 杨, 等. 基于灰度CT图像的岩石孔隙分形维数计算[J]. 科学通报, 2011, 56(26): 2256-2266. (PENG Rui-dong, YANG Yan-cong, JU Yang, et al. Computation of fractal dimension of rock pores based on gray CT images[J]. Chinese Sci Bull, 2011, 56(26): 2256-2266. (in Chinese))
    [3]
    TOMIOKA S, KOZAKI T, TAKAMATSU H, et al. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied Clay Science, 2010, 47(1): 510-512.
    [4]
    李建胜, 王 东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩石工程学报, 2010, 32(11): 1703-1708. (LI Jian-sheng, WANG Dong, KANG Tian-he. Algorithmic study on rock pore structure based on micro-CT experiment[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1703-1708. (in Chinese))
    [5]
    SEZER G İ, RAMYAR K, KARASU B, et al. Image analysis of sulfate attack on hardened cement paste[J]. Materials & Design, 2008, 29(1): 224-231.
    [6]
    LIU C, SHI B, ZHOU J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
    [7]
    吴义祥. 工程黏性土微观结构的定量评价[J]. 地球学报, 1991, 12(2): 143-151. (WU Yi-xiang. Quantitative approach on micro-structure of engineering clay[J]. Acta Geoscientica Sinica, 1991, 12(2): 143-151. (in Chinese))
    [8]
    施 斌, 李生林, TOLKACHEV M. 黏性土微观结构SEM图象的定量研究[J]. 中国科学:技术科学, 1995, 25(6): 666-672. (SHI Bin, LI Sheng-lin, TOLKACHEV M. Quantitative research on SEM image of the microstructure of cohesive soil[J]. Science in China(Series A) , 1995, 25(6): 666-672. (in Chinese))
    [9]
    涂新斌, 王思敬, 岳中琦. 香港风化花岗岩细观结构研究方法[J]. 工程地质学报, 2003, 11(4): 428-434. (TU Xin-bin, WANG Si-jin, YUE Zhong-qi. Methods for study of microstructure of weathered granite, HongKong[J]. Journal of Engineering Geology, 2003, 11(4): 428-434. (in Chinese))
    [10]
    王宝军, 施 斌, 刘志彬, 等. 基于GIS的黏性土微观结构的分形研究[J]. 岩土工程学报, 2004, 26(2): 244-247. (WANG Bao-jun, SHI Bin, LIU Zhi-shan, et al. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247. (in Chinese))
    [11]
    赵 岩, 郑娇玉, 郭 鹏, 等. ImageJ软件在泥石流固体颗粒分析中的应用[J]. 兰州大学学报:自然科学版, 2015, 51(6): 877-881. (ZHAO Yan, ZHEN Jiao-yu, GUO Peng, et al. Applications of the ImageJ sofeware in analysis of solid grains in a debris flow gully[J]. Journal of Lanzhou University (Natural Sciences), 2015, 51(6): 877-881. (in Chinese))
    [12]
    张吉群, 胡长军, 和冬梅, 等. 孔隙结构图像分析方法及其在岩石图像中的应用[J]. 测井技术, 2015, 39(5): 550-554. (ZHANG Ji-qun, HU Chang-jun, HE Dong-mei, et al. Image analysis method of pore structure and its application in rock image[J]. Well Logging Technology, 2015, 39(5): 550-554. (in Chinese))
    [13]
    GONZALEZ, WOODS R C, RICHARD E. Digital image processing[M]. 2nd ed. New Jersey: Upper Saddle River, 2002.
    [14]
    YU W W, HE F, XI P. A rapid 3D seed-filling algorithm based on scan slice[J]. Computers & Graphics, 2010, 34(4): 449-459.
    [15]
    HARRELL J. A visual comparator for degree of sorting in thin and plane sections[J]. Journal of Sedimentary Research, 1985, 54(2): 276-292.
    [16]
    PARESCHI M T, POMPILIO M, INNOCENTI F. Automated evaluation of volumetric grain-size distribution from thin-section images[J]. Computers & Geosciences, 1990, 16(8): 1067-1084.
    [17]
    施 斌. 黏性土击实过程中微观结构的定量评价[J]. 岩土工程学报, 1996, 18(4): 57-62. (SHI Bin. Quantitative assessment of changes of microstructure for clayey soil in the process of compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 57-62. (in Chinese))
    [18]
    COX M R, BUDHU M. A practical approach to grain shape quantification[J]. Engineering Geology, 2008, 96(1/2): 1-16.
    [19]
    EICHHUBL P, HOOKER J N, LAUBACH S E. Pure and shear-enhanced compaction bands in aztec sandstone[J]. Journal of Structural Geology, 2010, 32(12): 1873-1886.
  • Related Articles

    [1]YANG Xin-xin, XI Bao-ping, HE Shui-xin, DONG Yun-sheng, XIN Guo-xu. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. DOI: 10.11779/CJGE202210019
    [2]TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
    [3]LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006
    [4]WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008
    [5]LI Zhen, ZHANG Jing-ke, LIU Dun, ZHANG Ke, LIU Jian-hui, LI Li, LIANG Xing-zhou. Experimental study on indoor simulated deterioration of sandstone of Xiaofowan statues at Dazu Rock Carvings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1513-1521. DOI: 10.11779/CJGE201908016
    [6]LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017
    [7]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
    [8]YANG Yong-ming, JU Yang, MAO Ling-tao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 864-872. DOI: 10.11779/CJGE201405008
    [9]LIU Dong-yan, ZHAO Bao-yun, ZHU Ke-shan, XUE Kai-xi. Direct tension creep behaviors of sandstone and improvement and application of Burgers model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1740-1744.
    [10]MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 140-143.
  • Cited by

    Periodical cited type(51)

    1. 李杨杨,张搏明,张士川,郑丹,任邓君,陈方明,蔺成森,朱凯,鲁守明,徐新启. 循环荷载下初始损伤煤岩宏-细观破坏特征及劣化机制研究. 采矿与安全工程学报. 2025(01): 60-72 .
    2. 郝志桃,李喜安,安明晓,杨亚军,高荣荣. 循环增减湿条件下黄土胶黏粒运移规律试验研究. 西安科技大学学报. 2025(01): 138-152 .
    3. 张阳,崔素丽. Cu~(2+)污染原状黄土的物化及结构特性. 西北大学学报(自然科学版). 2024(01): 63-71 .
    4. 荣誉,倪万魁,聂永鹏,任思远,陈家乐,拓文鑫. 黄土标贯击数与物理力学参数相关性及微观机制分析. 科学技术与工程. 2024(03): 1192-1199 .
    5. 朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
    6. 王松,张硕,张钰,张红霞,黄太庆,甘磊. 广西某露天矿区不同复垦模式下土壤的孔隙特征. 金属矿山. 2024(03): 269-277 .
    7. 刘泽宇,陈开圣,陈荣亚. 荷载与干湿循环协同作用下红黏土变形特性及裂隙扩展规律研究. 广西大学学报(自然科学版). 2024(02): 232-248 .
    8. 龚爽,张寒松,赵毅鑫,孙世毅,周永恒,神文龙. 酸性压裂液对无烟煤动态断裂行为及能量耗散规律影响研究. 岩石力学与工程学报. 2024(05): 1152-1175 .
    9. 张重重,张宁,陈筠,陈泰徐,常强. 碱液(NaOH)对风积砂强度的影响与微观作用机理研究. 土工基础. 2024(03): 479-484 .
    10. 王欢,贾利旺,刘腾蛟,王建棋. 碱激发低钙粉煤灰改良膨胀土的工程特性及微观机理. 科学技术与工程. 2024(20): 8631-8639 .
    11. 鲍先凯,张童,崔广芹,宋翔宇,吴宁,郑文翔. 水中高压电脉冲作用下径向预制裂纹扩展规律. 科学技术与工程. 2024(24): 10253-10267 .
    12. 黎宇,胡明鉴,郑思维,王志兵. 电石渣-矿渣固化膨胀土强度及微观机制研究. 岩土力学. 2024(S1): 461-470 .
    13. 曹庆园,朱建鸿. 基于改进残差网络的混凝土砂石骨料种类识别研究. 计算机科学. 2024(S2): 308-313 .
    14. 王欢,曹素娟,曹义康,邱翱博. 木质素改良膨胀土的工程特性及微观机理. 土木与环境工程学报(中英文). 2024(06): 9-15 .
    15. 罗枭雄,金伟,赵鹏远,钟志鸿,李海波,胡宇翔. 基于图像识别的土石坝坝料颗粒级配检测方法. 水利水电技术(中英文). 2024(12): 217-227 .
    16. 罗舒玉,邓羽松,陈洪松,王金悦,廖达兰. 干湿交替条件下喀斯特峰丛洼地土壤裂隙发育规律. 应用生态学报. 2023(02): 387-395 .
    17. 余晓露,李龙龙,蒋宏,卢龙飞,杜崇娇. 融合图像处理与深度学习的亮晶颗粒灰岩岩相学分析应用. 石油实验地质. 2023(05): 1026-1038 .
    18. 李丽华,黄畅,李文涛,李孜健,叶治. 稻壳灰-矿渣固化膨胀土力学与微观特性研究. 岩土力学. 2023(10): 2821-2832+2842 .
    19. 盛勇创,王释苇,张硕,王健豪,常成,张红霞,黄金生,甘磊. 不同粉垄深度对甘蔗地土壤孔隙结构的影响. 中国土壤与肥料. 2023(09): 12-19 .
    20. 尹大伟,丁屹松,汪锋,江宁,柳慧敏,谭毅. 考虑初始损伤的压力水浸煤岩力学特性试验研究. 煤炭学报. 2023(12): 4417-4432 .
    21. 匡萱,余斌,陈龙,董秀军. 基于无人机测量的泥石流固体颗粒图像识别与泥石流预警. 山地学报. 2023(05): 733-747 .
    22. 于际都,刘斯宏,沈超敏,毛航宇. 染色石膏颗粒一维压缩破碎与形状演化. 河海大学学报(自然科学版). 2022(01): 110-116 .
    23. 巩齐齐,明文静. 崩解性砂岩改良膨胀土的裂隙发育规律研究. 土木工程学报. 2022(02): 73-81 .
    24. 李祥春,高佳星,张爽,李毅,王梦娅,陆卫东. 基于扫描电镜、孔隙-裂隙分析系统和气体吸附的煤孔隙结构联合表征. 地球科学. 2022(05): 1876-1889 .
    25. 安文举,李王成,赵广兴,贾振江,刘巧玲,王洁,穆敏,李阳阳. 干湿循环对宁夏压砂砾石劣化的田间试验研究. 灌溉排水学报. 2022(06): 80-88 .
    26. 高祥,高亚楠. 基于光反射率突变的受力岩石裂纹提取方法. 工矿自动化. 2022(08): 76-84 .
    27. 段钊,董晨曦,郑文杰,马建全,李晓军. 砂质粉土冲击液化微观机理研究. 工程地质学报. 2022(04): 1087-1097 .
    28. 李春,谭维佳. 微生物诱导加固砂土的动力特性及微观试验研究. 人民长江. 2022(12): 173-178 .
    29. LIU Xiao-jun,FAN Jin-yue,YU Jing,GAO Xin. Solidification of loess using microbial induced carbonate precipitation. Journal of Mountain Science. 2021(01): 265-274 .
    30. 陈达,许强,郑光,彭双麒,王卓,何攀. 基于颗粒识别分析系统的碎屑流堆积物颗粒识别和统计方法研究. 水文地质工程地质. 2021(01): 60-69 .
    31. 朱楚雄,徐金明,钟传江. 基于全卷积神经网络的花岗岩中不同组分分布特征分析. 中国地质灾害与防治学报. 2021(01): 127-134 .
    32. 陈建湟,张中俭,徐文杰,李丽慧. 基于数字图像处理的矿物颗粒形态定量分析. 工程地质学报. 2021(01): 59-68 .
    33. 林春明,张霞,赵雪培,李鑫,黄舒雅,江凯禧. 沉积岩石学的室内研究方法综述. 古地理学报. 2021(02): 223-244 .
    34. 高睿,邓畅,蔡桦,石知政. 压灌桩桩土接触面微观结构特性模型试验研究. 华中科技大学学报(自然科学版). 2021(05): 67-73 .
    35. 吕家栋,赵立财. 复掺纤维和玻化微珠对湿热环境下混凝土性能的影响. 混凝土与水泥制品. 2021(08): 54-58 .
    36. 徐今星,杨根兰,梁风,史文兵,江兴元. 崩积体粒径的图像识别与分析. 科学技术与工程. 2021(26): 11084-11093 .
    37. 鄢然,廖记登,吴小勇,谢长江,夏磊. 基于卷积神经网络的砂石骨料分类方法研究. 激光与光电子学进展. 2021(20): 211-218 .
    38. 崔凯,高晓甜,王泽林,葛诚瑞. 祁连山麓18处明长城段落夯土的渗透性能. 兰州大学学报(自然科学版). 2021(06): 791-797 .
    39. 彭双麒,许强,郑光,李骅锦,陈达,杜鹏川. 白格滑坡-碎屑流堆积体颗粒识别与分析. 水利水电技术. 2020(02): 144-154 .
    40. 李凯,何志鹏,谢建文. 数字图像技术在岩土工程中的应用综述. 地质与资源. 2020(01): 106-112 .
    41. 钟秀梅,刘伟,刘钊钊. 不同制样方法对木质素改良黄土力学特性影响. 世界地震工程. 2020(01): 197-204 .
    42. 任晓虎,许强,赵宽耀,巨袁臻,杜鹏川. 反复入渗对重塑黄土渗透特性的影响. 地质科技通报. 2020(02): 130-138 .
    43. 徐政. 岩石扫描电镜分割阈值确定方法研究. 造纸装备及材料. 2020(02): 103+147 .
    44. 高睿,俞皓,蔡桦,邓畅. 基于SEM的长螺旋压灌桩水泥浆液渗透规律. 华中科技大学学报(自然科学版). 2020(06): 101-106+132 .
    45. 郭钟群,赖远明,金解放,周尖荣,赵奎,孙政. 粒径及颗粒级配对离子型稀土二维入渗特性的影响(英文). Transactions of Nonferrous Metals Society of China. 2020(06): 1647-1661 .
    46. 邹锡云,许强,赵宽耀,李姝. 浸水作用下黑方台黄土渗透特性变化微观研究. 人民长江. 2020(06): 166-171 .
    47. 张丙树,顾凯,李金文,唐朝生,施斌,李天斌. 钙质砂破碎过程及其微观机制试验研究. 工程地质学报. 2020(04): 725-733 .
    48. 余逍逍,史文兵,王小明,梁风,徐伟. 基于数字图像处理技术的溶蚀岩体细观变形破坏机制模拟研究. 中国岩溶. 2020(03): 409-416 .
    49. 李学,张鹏,宋晶. 饱和细粒土固结的三维多尺度结构演化及微宏观性质分析. 天津大学学报(自然科学与工程技术版). 2019(S1): 76-83 .
    50. 刘庆贺,王在敏,陈卓. 基于PCAS对砂土孔隙特征的识别与应用. 实验室研究与探索. 2019(09): 58-61+134 .
    51. 彭双麒,许强,李骅锦,郑光. 基于高精度图像识别的堆积体粒径分析. 工程地质学报. 2019(06): 1290-1301 .

    Other cited types(70)

Catalog

    Article views (760) PDF downloads (868) Cited by(121)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return