• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Yong-ming, JU Yang, MAO Ling-tao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 864-872. DOI: 10.11779/CJGE201405008
Citation: YANG Yong-ming, JU Yang, MAO Ling-tao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 864-872. DOI: 10.11779/CJGE201405008

Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress

More Information
  • Received Date: July 29, 2013
  • Published Date: May 20, 2014
  • A series of triaxial compressive tests and CT scanning tests on tight sand are carried out using the triaxial testing machine and CT scanning machine. The CT images of fractured cracks subjected to diverse triaxial stresses are obtained. The image processing technique and statistic principles are employed to extract geometric morphology of crack growth. The geometrical parameters are proposed to describe the growth morphology of fractured cracks, i.e., area, length, width and fractal dimension. The distribution characters of geometric parameters are analyzed. The effects of confined pressure on distribution characters of the above geometric parameters are exposed. The results show that the confined pressure has significant effects on the geometrical features of fractured cracks, such as area, length, width and fractal dimension. The area, length and width are all smaller when the confined pressure is smaller. With the increase of the confined pressure, the values of geometrical parameters rise also. The diverse confined pressures lead to different probability density distribution functions of geometrical parameters. The fractal dimensions of fractured cracks accord with the exponential decline law when the confined pressure rises. The fractal dimensions of cracks subjected to low confined pressure are larger than the ones subjected to high confined pressure. When the confined pressure is lower, the cracks with larger fractal dimensions exhibit complex geometric morphology and rough boundary curves. The crack networks with more small cracks occupy the whole cross section of specimens. When the confined pressure is higher, the cracks with less fractal dimensions become more regular and smooth. The main cracks approximating straight line appear and the small cracks disappear.
  • [1]
    张 群, 冯三利, 杨锡禄. 试论我国煤层气的基本储层特点及开发策略[J]. 煤炭学报, 2001, 26(3): 230-235. (ZHANG Qun, FENG San-li, YANG Xi-lu. Basic reservoir characteristics and development strategy of coalbed methane resource in China[J]. Journal of China Coal Society, 2001, 26(3): 230-235. (in Chinese))
    [2]
    戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(3): 257-264. (DAI Jin-xing, NI Yun-yan, WU Xiao-qi. Tight gas in China and its significance in exploration and exploitation[J]. Petroleum Exploration and Development, 2012, 39(3): 257-264. (in Chinese))
    [3]
    邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. (ZOU Cai-neng, DONG Da-zhong, WANG She-jiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. (in Chinese))
    [4]
    邹才能, 杨 智, 崔景伟, 等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1): 14-26. (ZOU Cai-neng, YANG Zhi, CUI Jing-wei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26. (in Chinese))
    [5]
    GREEN A E, SNEDDON I N. The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1950, 46(1): 159-163.
    [6]
    PERKINS T K, KERN L R. Widths of hydraulic fractures[J]. Journal of Petroleum Technology, 1961, 13(9): 937-949.
    [7]
    NORDREN R P. Propagation of a vertical hydraulic fracture[J]. SPE Journal, 1972, 12(4): 306-314.
    [8]
    WARPINSKI N, CLARK J, SCHMIDT R, et al. Laboratory investigation on the effect of in-situ stress on hydraulic fracture containment[J]. SPE Journal, 1982, 22(3): 55-66.
    [9]
    黄辅琼, 欧阳健, 肖承文. 储层岩心裂缝与试件裂缝定量描述方法研究[J]. 测井技术信息, 1997, 21(5): 356-360. (HUANG Fu-qiong, OU-YANG Jian, XIAO Cheng-wen. A quantitative description method for cores and tested samples fractures[J]. Well Logging Technology Information, 1997, 21(5): 356-360. (in Chinese))
    [10]
    SATO A, HIRAKAWA Y, SUGAWARA K. Mixed mode crack propagation of homogenized cracks by the two-dimensional DDM analysis[J]. Construction and Building Materials, 2001, 15(5/6): 247-261.
    [11]
    WONG R H C, WANG S W. Experiment and numerical study on the effect of material property, normal stress and the position of joint on the progressive failure under direct shear[C]// NARMS-TAC, Mining and Tunneling Innovation and Opportunity. Toronto: 2002: 1009-1016.
    [12]
    任建喜, 冯晓光, 刘 慧. 三轴压缩单一裂隙砂岩细观损伤破坏特性CT分析[J]. 西安科技大学学报, 2009, 29(3): 300-304. (REN Jian-xi, FENG Xiao-guang, LIU Hui. CT analysis microscopic damage and failure characteristics of sandstone with single crack under triaxial compression[J]. Journal of Xi’an University of Science and Technology, 2009, 29(3): 300-304. (in Chinese))
    [13]
    李廷春, 吕海波. 三轴压缩载荷作用下单裂隙扩展的CT实时扫描试验[J]. 岩石力学与工程学报, 2010, 29(2): 289-296. (LI Ting-chun, LÜ Hai-bo. CT real-time scanning tests on single crack propagation under triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 289-296. (in Chinese))
    [14]
    梁正召, 李连崇, 唐世斌, 等. 岩石三维表面裂纹扩展机理数值模拟研究[J]. 岩土工程学报, 2011, 33(10): 1615-1622. (LIANG Zheng-zhao, LI Lian-chong, TANG Shi-bin, et al. 3D numerical simulation of growth of surface crack of rock specimens[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1615-1622. (in Chinese))
    [15]
    赵延林, 万 文, 王卫军, 等. 类岩石材料有序多裂纹体单轴压缩破断试验与翼形断裂数值模拟[J]. 岩土工程学报, 2013, 35(11): 2097-2109. (ZHAO Yan-lin, WAN Wen, WANG Wen-jun, et al. Fracture experiment of ordered multi-crack body in rock-like material under uniaxial compression and numerical simulation of wing cracks[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2097-2109. (in Chinese))
    [16]
    赵延林, 万 文, 王卫军, 等. 类岩石裂纹压剪流变断裂与亚临界扩展试验及破坏机制[J]. 岩土工程学报, 2012, 34(6): 1050-1059. (ZHAO Yan-lin, WAN Wen, WANG Wei-jun, et al. Compressive-shear rheological fracture of rock-like cracks and subcritical crack propagation test and fracture mechanism[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1050-1059. (in Chinese))
    [17]
    杨圣奇, 刘相如. 不同围压下断续预制裂隙大理岩扩容特性试验研究[J]. 岩土工程学报, 2012, 34(12): 2188-2197. (YANG Sheng-qi, LIU Xiang-ru. Experimental investigation on dilatancy behavior of marble with pre- existing fissures under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2188-2197. (in Chinese))
    [18]
    谢和平, 陈至达. 岩石类材料裂纹分叉非规则性几何.的分形效应[J]. 力学学报, 1989, 21(5): 613-618. (XIE He-ping, CHEN Zhi-da. The fractal effect of irregular geometry on crack bifurcation of rock materials[J]. Acta Mechanica Sinica, 1989, 21(5): 613-618. (in Chinese))
    [19]
    LAUBACH S, MARRETT R, OLSON J. New directions in fracture characterization[J]. The Leading Edge, 2000, 19(7): 704-711.
    [20]
    OUAHED E, KOUIDER A, TIAB D, et al. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeriai[J]. Journal of Petroleum Science and Engineering, 2005, 49(3/4): 122-141.
    [21]
    谢和平, 薛秀谦. 分形应用中的数学基础与方法[M], 北京: 科学出版社, 1997. (XIE He-ping, XUE Xiu-qian. The mathematical foundation and method of Fractal application[M]. Beijing: Science Press, 1997. (in Chinese))

Catalog

    Article views (406) PDF downloads (702) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return