Citation: | YANG Xin-xin, XI Bao-ping, HE Shui-xin, DONG Yun-sheng, XIN Guo-xu. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. DOI: 10.11779/CJGE202210019 |
[1] |
LIDMAN W G, BOBROWSKY A R. Correlation of physical properties of ceramic materials with resistance to fracture by thermal shock[C]// Proceedings of the National Advisory Committee for Aeronautics, NACA research memorandum and Lewis Flight Propulsion Laboratory. Washington D C: National Advisory Committee for Aeronautics, 1949: 1.
|
[2] |
赵阳升, 万志军, 康建荣. 高温岩体地热开发导论[M]. 北京: 科学出版社, 2004.
ZHAO Yang-sheng, WAN Zhi-jun, KANG Jian-rong. Introduction to Geothermal Extraction in Hot Dry Rock[M]. Beijing: Science Press, 2004. (in Chinese)
|
[3] |
郤保平, 吴阳春, 王帅, 等. 热冲击作用下花岗岩力学特性及其随冷却温度演变规律试验研究[J]. 岩土力学, 2020, 41(增刊1): 83–94. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1010.htm
XI Bao-ping, WU Yang-chun, WANG Shuai, et al. Evolution of mechanical properties of granite under thermal shock in water with different cooling temperatures[J]. Rock and Soil Mechanics, 2020, 41(S1): 83–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1010.htm
|
[4] |
郤保平, 吴阳春, 赵阳升, 等. 不同冷却模式下花岗岩强度对比与热破坏能力表征试验研究[J]. 岩石力学与工程学报, 2020, 39(2): 286–300. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002009.htm
XI Bao-ping, WU Yang-chun, ZHAO Yang-sheng, et al. Experimental investigations of compressive strength and thermal damage capacity characterization of granite under different cooling modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 286–300. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002009.htm
|
[5] |
郤保平, 吴阳春, 王帅, 等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报, 2020, 39(1): 69–83. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001007.htm
XI Bao-ping, WU Yang-chun, WANG Shuai, et al. Experimental study on mechanical properties of granite taken from Gonghe Basin, Qinghai Province after high temperature thermal damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 69–83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202001007.htm
|
[6] |
郤保平, 吴阳春, 赵阳升. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2194–2207. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911005.htm
XI Bao-ping, WU Yang-chun, ZHAO Yang-sheng. Experimental study on the relationship between macroscopic mechanical parameters of granite and thermal shock velocity under thermal shock[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2194–2207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911005.htm
|
[7] |
贺玉龙, 杨立中. 温度和有效应力对砂岩渗透率的影响机理研究[J]. 岩石力学与工程学报, 2005, 24(14): 2420–2427. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200514004.htm
HE Yu-long, YANG Li-zhong. Mechanism of effects of temperature and effective stress on permeability of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2420–2427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200514004.htm
|
[8] |
周青春. 温度、孔隙水和应力作用下砂岩的力学特性研究[D]. 北京: 中国科学院研究生院, 2006.
ZHOU Qing-chun. Study on the Mechanical Property of A Sandstone under Geothermal-Mechanical and Hydraulic-Mechanical Coupling[D]. Beijing: Chinese Academy of Sciences, 2006. (in Chinese)
|
[9] |
苏承东, 付义胜. 红砂岩三轴压缩变形与强度特征的试验研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3164–3169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1080.htm
SU Cheng-dong, FU Yi-sheng. Experimental study of triaxial compression deformation and strength characteristics of red sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3164–3169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1080.htm
|
[10] |
LOWELL S, SHIELDS J E, THOMAS M A, et al. Other Surface Area Methods[M]// Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Dordrecht: Springer Netherlands, 2004: 82–93.
|
[11] |
BAKKE S, ØREN P E. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks[J]. SPE Journal, 1997, 2(2): 136–149.
|
[12] |
ATTWOOD D. Nanotomography comes of age[J]. Nature, 2006, 442(7103): 642–643.
|
[13] |
SAKDINAWAT A, ATTWOOD D. Nanoscale X-ray imaging[J]. Nature Photonics, 2010, 4(12): 840–848.
|
[14] |
赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008, 27(1): 28–34. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801005.htm
ZHAO Yang-sheng, MENG Qiao-rong, KANG Tian-he, et al. Micro-ct experimental technology and meso-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28–34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801005.htm
|
[15] |
LIU H, YANG G S, YUN Y H, et al. Investigation of sandstone mesostructure damage caused by freeze-thaw cycles via CT image enhancement technology[J]. Advances in Civil Engineering, 2020, 2020: 8875814.
|
[16] |
戎虎仁, 白海波, 王占盛. 不同温度后红砂岩力学性质及微观结构变化规律试验研究[J]. 岩土力学, 2015, 36(2): 463–469. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502026.htm
RONG Hu-ren, BAI Hai-bo, WANG Zhan-sheng. Experimental research on mechanical properties and microstructure change law of red sandstone after different temperatures[J]. Rock and Soil Mechanics, 2015, 36(2): 463–469. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502026.htm
|
[17] |
JIN P H, HU Y Q, SHAO J X, et al. Influence of temperature on the structure of pore–fracture of sandstone[J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 1–12.
|
[18] |
金爱兵, 王树亮, 魏余栋, 等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学, 2020, 41(11): 3531–3539, 3603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011004.htm
JIN Ai-bing, WANG Shu-liang, WEI Yu-dong, et al. Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone[J]. Rock and Soil Mechanics, 2020, 41(11): 3531–3539, 3603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011004.htm
|
[19] |
张渊, 张贤, 赵阳升. 砂岩的热破裂过程[J]. 地球物理学报, 2005, 48(3): 656–659. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503024.htm
ZHANG Yuan, ZHANG Xian, ZHAO Yang-sheng. Process of sandstone thermal cracking[J]. Chinese Journal of Geophysics, 2005, 48(3): 656–659. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200503024.htm
|
[20] |
张渊, 万志军, 赵阳升. 细砂岩热破裂规律的细观实验研究[J]. 辽宁工程技术大学学报, 2007, 26(4): 529–531. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200704014.htm
ZHANG Yuan, WAN Zhi-jun, ZHAO Yang-sheng. Meso-experiment of fine sandstone thermal crack laws[J]. Journal of Liaoning Technical University, 2007, 26(4): 529–531. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FXKY200704014.htm
|
[21] |
于艳梅, 胡耀青, 梁卫国, 等. 应用CT技术研究瘦煤在不同温度下孔隙变化特征[J]. 地球物理学报, 2012, 55(2): 637–644. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201202026.htm
YU Yan-mei, HU Yao-qing, LIANG Wei-guo, et al. Study on pore characteristics of lean coal at different temperature by CT technology[J]. Chinese Journal of Geophysics, 2012, 55(2): 637–644. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201202026.htm
|
[22] |
王登科, 张平, 浦海, 等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2243–2252. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810005.htm
WANG Deng-ke, ZHANG Ping, PU Hai, et al. Experimental research on cracking process of coal under temperature variation with industrial micro-CT[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2243–2252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810005.htm
|
[23] |
杨更社, 刘慧. 基于CT图像处理的冻结岩石细观结构及损伤力学特性[M]. 北京: 科学出版社, 2016.
YANG Geng-she, LIU Hui. Microstructure and Damage Mechanical Characteristics of Frozen Rock Based on CT Image Processing[M]. Beijing: Science Press, 2016. (in Chinese)
|
[1] | YAO Wei, YU Jin, ZHOU Xianqi, CHANG Fangqiang, CHANG Xu. Damage cracking and permeability characteristics of red sandstone under combined disturbance of cyclic loading and confining pressure unloading[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 48-56. DOI: 10.11779/CJGE20240053 |
[2] | HUANG Xianwen, JIANG Pengming, ZHOU Aizhao, WANG Wei, TANG Chuxuan. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772 |
[3] | KONG Desen, ZHAO Mingkai, SHI Jian, TENG Sen. A model for predicting gas-water relative permeability of rock media based on fractal dimension characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1421-1429. DOI: 10.11779/CJGE20220463 |
[4] | QU Shizhang, LIU Xiaoming, LI Li, CHEN Renpeng. Formula for permeability coefficient of coarse-grained soil based on parameters of two-dimensional fractal gradation model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 144-152. DOI: 10.11779/CJGE20210543 |
[5] | SONG Lin-hui, HUANG Qiang, YAN Di, MEI Guo-xiong. Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. DOI: 10.11779/CJGE201809009 |
[6] | HUANG Zhen, JIANG Zhen-quan, SUN Qiang, CAO Ding-tao, WANG Yan-jian, ZHANG Dong. High-pressure water injection tests on permeability of deep rock mass under tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1535-1543. DOI: 10.11779/CJGE201408021 |
[7] | XU Ri-qing, ZHANG Qing-he, LIU Xin, LIAO Bin. Methods for calculating soil-water pressure considering permeability[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 961-964. |
[8] | SUN Qiang, JIANG Zhen-quan, ZHU Shu-yun. Experimental study on permeability of soft rock of Beizao Coal Mine[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 540-545. |
[9] | SHAO Shengjun, LI Jianjun, YANG Fuyin. Pore characteristics of coarse grained soil and their effect on slurry permeability[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 59-65. |
[10] | XU Yongfu, HUANG Yinchuan. Fractal-textured soils and their unsaturated mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638. |
1. |
周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 .
![]() | |
2. |
梁晓敏,顾晓强,翟崇朴,魏德亨. 颗粒材料各向异性弹性波速与微观组构CT试验研究. 岩土工程学报. 2024(07): 1398-1407 .
![]() | |
3. |
贾鹏,郤保平,李晓科,解瑾,蔡佳豪,高鹏利. 花岗岩非稳态传热破坏过程能量演变规律研究. 岩土力学. 2024(10): 3013-3023+3036 .
![]() | |
4. |
贾宇,翟越,李宇白,谢梓涵,王奥晨,殷溥隆. 不同恒温时间加热下花岗岩冲击压缩力学特性及破碎特征. 中南大学学报(自然科学版). 2024(09): 3494-3504 .
![]() | |
5. |
程才,姚旭龙,张艳博,高光宇,陶志刚,郭斌. 多源数据融合数字岩石模型研究与信息管理平台研发. 矿业研究与开发. 2024(10): 231-238 .
![]() | |
6. |
贾鹏,郤保平,李晓科,解瑾,蔡佳豪. 热作用下花岗岩能量演变的尺度分析. 太原理工大学学报. 2024(06): 1020-1030 .
![]() | |
7. |
解瑾,郤保平,何水鑫,李晓科,蔡佳豪,贾鹏. 青海共和盆地花岗岩细观热损伤研究. 太原理工大学学报. 2024(06): 971-980 .
![]() | |
8. |
李满,刘先珊,潘玉华,乔士豪,郝梓宇,钱磊,罗晓雷. 循环热冲击后裂隙砂岩力学特性试验研究. 岩土力学. 2023(05): 1260-1270 .
![]() | |
9. |
王登科,董博文,魏建平,张力元,张宏图,曹塘根,夏玉玲. 不同冲击速度下含气砂岩损伤-渗流特性试验研究. 煤炭学报. 2023(05): 2138-2152 .
![]() | |
10. |
王萌,于群丁,肖源杰,华文俊,李文奇. 振动荷载下不同级配的基床粗粒土填料孔隙连通性特征研究. 中南大学学报(自然科学版). 2023(11): 4436-4448 .
![]() |