• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006
Citation: LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006

Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups

More Information
  • Received Date: January 24, 2021
  • Available Online: September 22, 2022
  • Based on the project of diverting water from Yangtze River to Huaihe River, the long-term effect of the improved expansive soils with disintegrated sandstone waste from river excavation is studied. The results show that: (1) The disintegrated sandstone improves the compactness and strength characteristics of the expansive soils. The improved expansive soils have the best compactness when the particle size of the disintegrated sandstone is less than 2 mm. The direct shear index of the physically improved soils is positively correlated with the particle size of the sandstone. The direct shear index of the compositely improved soils is mainly controlled by the improvement of cement, and the influences of particle size of the sandstone is not obvious. (2) The disintegrated sandstone can inhibit the cracking of the improved expansive soils during wetting-drying cycles. When the particle size of the sandstone is larger than 10 mm, there will be crack concentration in the surrounding soils. The crack rate of the compositely improved soils is significantly lower than that of the cement-improved soils, and has no significant correlation with the particle size of the sandstone. (3) The disintegrated sandstone has the effect of delaying the cohesion attenuation of the improved soils in the process of wetting-drying cycles, and the effect is affected by the particle size of the sandstone. The particle size of sandstone shall not be greater than 10 mm in the physically improved soils and 5 mm in the compositely improved soils. (4) The microscopic evolution characteristics of the disintegrated sandstone affect the macroscopic crack development and strength attenuation of the improved soils.
  • [1]
    廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

    LIAO Shi-wen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
    [2]
    胡斌, 王新刚, 连宝琴. 纤维类材料改善膨胀土工程性能的适用性探讨[J]. 岩土工程学报, 2010, 32(增刊2): 615–618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2151.htm

    HU Bin, WANG Xin-gang, LIAN Bao-qin. Applicability exploration of improving engineering properties of expansive soil with fiber materials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 615–618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2151.htm
    [3]
    庄心善, 王子翔, 杨文博. 粉煤灰-天然砂改良膨胀土强度特性试验研究[J]. 长江科学院院报, 2019, 36(8): 86–89, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201908018.htm

    ZHUANG Xin-shan, WANG Zi-xiang, YANG Wen-bo. Strength characteristics of modified expansive soil with fly ash and weathered sand[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 86–89, 96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201908018.htm
    [4]
    YONG R N, BOONSINSUK P, WONG G. Formulation of backfill material for a nuclear fuel waste disposal vault[J]. Canadian Geotechnical Journal, 1986, 23(2): 216–228. doi: 10.1139/t86-031
    [5]
    杨俊, 黎新春, 张国栋, 等. 风化砂改良膨胀土膨胀特性试验研究[J]. 长江科学院院报, 2013, 30(4): 67–72. doi: 10.3969/j.issn.1001-5485.2013.04.015

    YANG Jun, LI Xin-chun, ZHANG Guo-dong, et al. Expansive properties of expansive soil improved by mixing weathered sand[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(4): 67–72. (in Chinese) doi: 10.3969/j.issn.1001-5485.2013.04.015
    [6]
    杨俊, 童磊, 许威, 等. 冻融循环影响风化砂改良膨胀土抗剪强度室内试验研究[J]. 工程地质学报, 2015, 23(1): 65–71. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501013.htm

    YANG Jun, TONG Lei, XU Wei, et al. Laboratory research on effect of freeze-thaw cycles to shear strength of weathered sand improved with expansive soil[J]. Journal of Engineering Geology, 2015, 23(1): 65–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501013.htm
    [7]
    杨俊, 袁凯, 张国栋, 等. 干湿循环对风化砂改良膨胀土回弹模量影响研究[J]. 长江科学院院报, 2015, 32(11): 40–44, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201511009.htm

    YANG Jun, YUAN Kai, ZHANG Guo-dong, et al. Effect of wetting-drying cycle on resilient modulus of expansive soil improved by weathered sand[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(11): 40–44, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201511009.htm
    [8]
    YAMAGUCHI H, YOSHIDA K, KUROSHIMA I, et al. Slaking and shear properties of mudstone[J]. Rock Mechanics and Power Plants, 1988, 24(3): 133–144.
    [9]
    吴道祥, 刘宏杰, 王国强. 红层软岩崩解性室内试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4173–4179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2104.htm

    WU Dao-xiang, LIU Hong-jie, WANG Guo-qiang. Laboratory experimental study of slaking characteristics of red-bed soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4173–4179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2104.htm
    [10]
    张磊, 刘镇, 周翠英. 红层软岩浸水裂纹扩展试验与破裂机制分析[J]. 中山大学学报(自然科学版), 2012, 51(6): 35–40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htm

    ZHANG Lei, LIU Zhen, ZHOU Cui-ying. Experiment of crack propagation of red-bed soft rock in water and micromechanical mechanism of crack propagation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 35–40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htm
    [11]
    赵明华, 刘晓明, 苏永华. 含崩解软岩红层材料路用工程特性试验研究[J]. 岩土工程学报, 2005, 27(6): 667–671. doi: 10.3321/j.issn:1000-4548.2005.06.012

    ZHAO Ming-hua, LIU Xiao-ming, SU Yong-hua. Experimental studies on engineering properties of red bed material containing slaking rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 667–671. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.012
    [12]
    李国维, 巩齐齐, 李涛, 等. 崩解性砂岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 2021, 29(1): 34–43. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101004.htm

    LI Guo-wei, GONG Qi-qi, LI Tao, et al. Experimental study on properties of weak expansive soil improved by disintegrated sandstone[J]. Journal of Engineering Geology, 2021, 29(1): 34–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101004.htm
    [13]
    土工试验规程: SL 237—1999[S]. 1999.

    Specification of Soil Test: SL 237—1999[S]. 1999. (in Chinese)
    [14]
    杨俊, 黎新春, 张国栋, 等. 不同粒径风化砂改良膨胀土的特性试验[J]. 成都理工大学学报(自然科学版), 2015, 42(1): 26–33. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501004.htm

    YANG Jun, LI Xin-chun, ZHANG Guo-dong, et al. Experimental study on characteristics of improved expansive soil by mixing different sizes of weathered sands[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(1): 26–33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501004.htm
    [15]
    谢小帅, 陈华松, 肖欣宏, 等. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报, 2019, 27(5): 966–972. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905004.htm

    XIE Xiao-shuai, CHEN Hua-song, XIAO Xin-hong, et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 2019, 27(5): 966–972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905004.htm
  • Cited by

    Periodical cited type(10)

    1. 周韬,范永林,陈家嵘,周昌台. 热损伤花岗岩力学劣化特性及损伤演化规律研究. 矿业科学学报. 2024(03): 351-360 .
    2. 梁晓敏,顾晓强,翟崇朴,魏德亨. 颗粒材料各向异性弹性波速与微观组构CT试验研究. 岩土工程学报. 2024(07): 1398-1407 . 本站查看
    3. 贾鹏,郤保平,李晓科,解瑾,蔡佳豪,高鹏利. 花岗岩非稳态传热破坏过程能量演变规律研究. 岩土力学. 2024(10): 3013-3023+3036 .
    4. 贾宇,翟越,李宇白,谢梓涵,王奥晨,殷溥隆. 不同恒温时间加热下花岗岩冲击压缩力学特性及破碎特征. 中南大学学报(自然科学版). 2024(09): 3494-3504 .
    5. 程才,姚旭龙,张艳博,高光宇,陶志刚,郭斌. 多源数据融合数字岩石模型研究与信息管理平台研发. 矿业研究与开发. 2024(10): 231-238 .
    6. 贾鹏,郤保平,李晓科,解瑾,蔡佳豪. 热作用下花岗岩能量演变的尺度分析. 太原理工大学学报. 2024(06): 1020-1030 .
    7. 解瑾,郤保平,何水鑫,李晓科,蔡佳豪,贾鹏. 青海共和盆地花岗岩细观热损伤研究. 太原理工大学学报. 2024(06): 971-980 .
    8. 李满,刘先珊,潘玉华,乔士豪,郝梓宇,钱磊,罗晓雷. 循环热冲击后裂隙砂岩力学特性试验研究. 岩土力学. 2023(05): 1260-1270 .
    9. 王登科,董博文,魏建平,张力元,张宏图,曹塘根,夏玉玲. 不同冲击速度下含气砂岩损伤-渗流特性试验研究. 煤炭学报. 2023(05): 2138-2152 .
    10. 王萌,于群丁,肖源杰,华文俊,李文奇. 振动荷载下不同级配的基床粗粒土填料孔隙连通性特征研究. 中南大学学报(自然科学版). 2023(11): 4436-4448 .

    Other cited types(12)

Catalog

    Article views (246) PDF downloads (197) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return