• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006
Citation: LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006

Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups

More Information
  • Received Date: January 24, 2021
  • Available Online: September 22, 2022
  • Based on the project of diverting water from Yangtze River to Huaihe River, the long-term effect of the improved expansive soils with disintegrated sandstone waste from river excavation is studied. The results show that: (1) The disintegrated sandstone improves the compactness and strength characteristics of the expansive soils. The improved expansive soils have the best compactness when the particle size of the disintegrated sandstone is less than 2 mm. The direct shear index of the physically improved soils is positively correlated with the particle size of the sandstone. The direct shear index of the compositely improved soils is mainly controlled by the improvement of cement, and the influences of particle size of the sandstone is not obvious. (2) The disintegrated sandstone can inhibit the cracking of the improved expansive soils during wetting-drying cycles. When the particle size of the sandstone is larger than 10 mm, there will be crack concentration in the surrounding soils. The crack rate of the compositely improved soils is significantly lower than that of the cement-improved soils, and has no significant correlation with the particle size of the sandstone. (3) The disintegrated sandstone has the effect of delaying the cohesion attenuation of the improved soils in the process of wetting-drying cycles, and the effect is affected by the particle size of the sandstone. The particle size of sandstone shall not be greater than 10 mm in the physically improved soils and 5 mm in the compositely improved soils. (4) The microscopic evolution characteristics of the disintegrated sandstone affect the macroscopic crack development and strength attenuation of the improved soils.
  • [1]
    廖世文. 膨胀土与铁路工程[M]. 北京: 中国铁道出版社, 1984.

    LIAO Shi-wen. Expansive Soil and Railway Engineering[M]. Beijing: China Railway Publishing House, 1984. (in Chinese)
    [2]
    胡斌, 王新刚, 连宝琴. 纤维类材料改善膨胀土工程性能的适用性探讨[J]. 岩土工程学报, 2010, 32(增刊2): 615–618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2151.htm

    HU Bin, WANG Xin-gang, LIAN Bao-qin. Applicability exploration of improving engineering properties of expansive soil with fiber materials[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 615–618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S2151.htm
    [3]
    庄心善, 王子翔, 杨文博. 粉煤灰-天然砂改良膨胀土强度特性试验研究[J]. 长江科学院院报, 2019, 36(8): 86–89, 96. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201908018.htm

    ZHUANG Xin-shan, WANG Zi-xiang, YANG Wen-bo. Strength characteristics of modified expansive soil with fly ash and weathered sand[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 86–89, 96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201908018.htm
    [4]
    YONG R N, BOONSINSUK P, WONG G. Formulation of backfill material for a nuclear fuel waste disposal vault[J]. Canadian Geotechnical Journal, 1986, 23(2): 216–228. doi: 10.1139/t86-031
    [5]
    杨俊, 黎新春, 张国栋, 等. 风化砂改良膨胀土膨胀特性试验研究[J]. 长江科学院院报, 2013, 30(4): 67–72. doi: 10.3969/j.issn.1001-5485.2013.04.015

    YANG Jun, LI Xin-chun, ZHANG Guo-dong, et al. Expansive properties of expansive soil improved by mixing weathered sand[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(4): 67–72. (in Chinese) doi: 10.3969/j.issn.1001-5485.2013.04.015
    [6]
    杨俊, 童磊, 许威, 等. 冻融循环影响风化砂改良膨胀土抗剪强度室内试验研究[J]. 工程地质学报, 2015, 23(1): 65–71. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501013.htm

    YANG Jun, TONG Lei, XU Wei, et al. Laboratory research on effect of freeze-thaw cycles to shear strength of weathered sand improved with expansive soil[J]. Journal of Engineering Geology, 2015, 23(1): 65–71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501013.htm
    [7]
    杨俊, 袁凯, 张国栋, 等. 干湿循环对风化砂改良膨胀土回弹模量影响研究[J]. 长江科学院院报, 2015, 32(11): 40–44, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201511009.htm

    YANG Jun, YUAN Kai, ZHANG Guo-dong, et al. Effect of wetting-drying cycle on resilient modulus of expansive soil improved by weathered sand[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(11): 40–44, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201511009.htm
    [8]
    YAMAGUCHI H, YOSHIDA K, KUROSHIMA I, et al. Slaking and shear properties of mudstone[J]. Rock Mechanics and Power Plants, 1988, 24(3): 133–144.
    [9]
    吴道祥, 刘宏杰, 王国强. 红层软岩崩解性室内试验研究[J]. 岩石力学与工程学报, 2010, 29(增刊2): 4173–4179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2104.htm

    WU Dao-xiang, LIU Hong-jie, WANG Guo-qiang. Laboratory experimental study of slaking characteristics of red-bed soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 4173–4179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S2104.htm
    [10]
    张磊, 刘镇, 周翠英. 红层软岩浸水裂纹扩展试验与破裂机制分析[J]. 中山大学学报(自然科学版), 2012, 51(6): 35–40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htm

    ZHANG Lei, LIU Zhen, ZHOU Cui-ying. Experiment of crack propagation of red-bed soft rock in water and micromechanical mechanism of crack propagation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 35–40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206008.htm
    [11]
    赵明华, 刘晓明, 苏永华. 含崩解软岩红层材料路用工程特性试验研究[J]. 岩土工程学报, 2005, 27(6): 667–671. doi: 10.3321/j.issn:1000-4548.2005.06.012

    ZHAO Ming-hua, LIU Xiao-ming, SU Yong-hua. Experimental studies on engineering properties of red bed material containing slaking rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 667–671. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.012
    [12]
    李国维, 巩齐齐, 李涛, 等. 崩解性砂岩改良弱膨胀土性状实验研究[J]. 工程地质学报, 2021, 29(1): 34–43. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101004.htm

    LI Guo-wei, GONG Qi-qi, LI Tao, et al. Experimental study on properties of weak expansive soil improved by disintegrated sandstone[J]. Journal of Engineering Geology, 2021, 29(1): 34–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202101004.htm
    [13]
    土工试验规程: SL 237—1999[S]. 1999.

    Specification of Soil Test: SL 237—1999[S]. 1999. (in Chinese)
    [14]
    杨俊, 黎新春, 张国栋, 等. 不同粒径风化砂改良膨胀土的特性试验[J]. 成都理工大学学报(自然科学版), 2015, 42(1): 26–33. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501004.htm

    YANG Jun, LI Xin-chun, ZHANG Guo-dong, et al. Experimental study on characteristics of improved expansive soil by mixing different sizes of weathered sands[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(1): 26–33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201501004.htm
    [15]
    谢小帅, 陈华松, 肖欣宏, 等. 水岩耦合下的红层软岩微观结构特征与软化机制研究[J]. 工程地质学报, 2019, 27(5): 966–972. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905004.htm

    XIE Xiao-shuai, CHEN Hua-song, XIAO Xin-hong, et al. Micro-structural characteristics and softening mechanism of red-bed soft rock under water-rock interaction condition[J]. Journal of Engineering Geology, 2019, 27(5): 966–972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905004.htm
  • Related Articles

    [1]MA Qiang, LI Meng, ZHOU Xinlong, XI Lei, SUN Jun. Mechanical properties and microscopic mechanisms of enzyme-induced calcium carbonate precipitation (EICP)-reinforced clay mixtures with rubber particles[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 72-76. DOI: 10.11779/CJGE2024S20001
    [2]YANG Shengqi, JING Xiaojiao. Experimental study on physical and mechanical properties of sandstone after drying-wetting cycles of brine[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2165-2171. DOI: 10.11779/CJGE20220830
    [3]LIU Kuan, YE Wan-jun, JING Hong-jun, DUAN Xu, ZHANG Ji. Microscopic damage identification and macroscopic mechanical response of loess in seasonal frozen areas[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 192-197. DOI: 10.11779/CJGE2021S1035
    [4]ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
    [5]CUI Xiang, ZHU Chang-qi, HU Ming-jian, WANG Ren, LIU Hai-feng. Microscopic mechanism of permeability of coral sand[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2336-2341. DOI: 10.11779/CJGE202012022
    [6]LONG An-fa, CHEN Kai-sheng, JI Yong-xin. Experimental study on wetting-drying cycles of red clay slopes under different rainfall intensities[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 193-196. DOI: 10.11779/CJGE2019S2049
    [7]CAI Zheng-yin, CHEN Hao, HUANG Ying-hao, ZHANG Chen. Failure mechanism of canal slopes of expansive soils considering action of wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1977-1982. DOI: 10.11779/CJGE201911001
    [8]LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017
    [9]YE Wei-min, WAN Min, CHEN Bao, CUI Yu-jun, WANG Ju. Micro-structural behaviors of densely compacted GMZ01 bentonite under drying/wetting cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1173-1177.
    [10]Influence of repeated drying and wetting cycles on mechanical behaviors of unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
  • Cited by

    Periodical cited type(9)

    1. 欧阳淼,张红日,邓人睿,王桂尧,肖杰,赵亚. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究. 岩土工程学报. 2025(01): 106-114 . 本站查看
    2. 黄雪琪. 干湿循环对红砂岩力学与微结构的影响研究. 山西建筑. 2024(17): 93-96 .
    3. 周锐,王保田,王斯杰,胡豹,王培清,张福海. 不同粒径组废旧轮胎橡胶颗粒改良膨胀土性能试验研究. 长江科学院院报. 2023(10): 115-122 .
    4. 华冰. 铜尾矿砂-水泥复合改性膨胀土性能试验研究. 铁道建筑技术. 2023(10): 16-19 .
    5. 田亚坤,伍玲玲,禹雪阳,刘邦瑶,张志军,章求才,戴兵,贺桂成. 干湿循环作用下金属矿尾砂MICP加固体的宏观性状与细观力学特性. 中国有色金属学报. 2023(09): 3104-3116 .
    6. 马鸿发,刘清秉,李靖. 掺砂率与干密度对膨润土收缩特性影响. 地质科技通报. 2023(06): 76-85 .
    7. 罗震宇. 干湿循环作用下改良膨胀土力学特性及微观机制研究. 交通科学与工程. 2023(06): 66-74 .
    8. 车瑜佩,李凯,贾静雯,张举宵,章凯,王乐宁. 干湿循环作用下膨胀土路基工程特性及其控制策略分析. 内蒙古科技与经济. 2022(16): 100-104+119 .
    9. 朱彦鹏,王浩,刘东瑞,吕玉宝,张志琦. 基于正交设计的风化砂岩流态固化土抗剪强度试验研究. 岩土工程学报. 2022(S1): 46-51 . 本站查看

    Other cited types(12)

Catalog

    Article views (246) PDF downloads (197) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return