• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yu, CHEN Wen-hua, WANG Kai-xuan. Effect of soil stratification on deformation of buried pipelines[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 900-909. DOI: 10.11779/CJGE201805015
Citation: WANG Yu, CHEN Wen-hua, WANG Kai-xuan. Effect of soil stratification on deformation of buried pipelines[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 900-909. DOI: 10.11779/CJGE201805015

Effect of soil stratification on deformation of buried pipelines

More Information
  • Revised Date: January 03, 2017
  • Published Date: May 24, 2018
  • Soil stratification exerts an important influence on deformation of buried pipelines, and stratified characteristics and deformation laws still need further to be studied. A method for calculating deformation of pipelines is established based on the theory of elastic multi-layer foundation, considering the non-homogeneous features of soils by the transfer matrix method and the finite difference method. The results are compared with those of the traditional theory and FLAC3D via examples. A further study is made to investigate the stratified features of soils and the attenuation laws with depth. The results show that the first underlying soil layer has a significant impact on mechanical response of pipelines and the influence of each layers decreases with the increase of its buried depth. The calculated results obtained by the homogenization method without consideration of the stratification features of soils are dangerous for the upper-soft and lower-hard strata and conservative for the upper-hard and lower-soft strata. The homogeneous solutions which take the attenuation laws of layered soils into account approach to those of stratification. The attenuation function obtained by the weight analysis method accords with the negative exponential distribution, and the attenuation rate in the upper-soft and lower-hard strata is much faster.
  • [1]
    李镜培, 丁士君. 邻近建筑荷载对地下管线的影响分析[J]. 同济大学学报(自然科学版), 2004, 32(12): 1553-1557. (LI Jing-pei, DING Shi-jun. Influence of additional load caused by adjacent buildings on underground pipeline[J]. Journal of Tongji University(Natural Science), 2004, 32(12): 1553-1557. (in Chinese))
    [2]
    龚晓南, 孙中菊, 俞建霖. 地面超载引起邻近埋地管道的位移分析[J]. 岩土力学, 2015, 36(2): 305-310. (GONG Xiao-nan, SUN Zhong-ju, YU Jian-lin. Analysis of displacement of adjacent buried pipeline caused by ground surcharge[J]. Rock and Soil Mechanics, 2015, 36(2): 305-310. (in Chinese))
    [3]
    FERNANDO N S M, CARTER J P. Elastic analysis of buried pipes under surface patch loadings[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(8): 720-728.
    [4]
    TRICKEY S A, MOORE I D. Three-dimensional response of buried pipes under circular surface loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(2): 219-223.
    [5]
    COREY R, HAN J, KHATRI D K, et al. Laboratory study on geosynthetic protection of buried steel-reinforced HDPE pipes from static loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(6): 1-10.
    [6]
    KHATRI D K, HAN J, PARSONS R L, et al. Laboratory evaluation of deformations of steel-reinforced high-density polyethylene pipes under static Loads[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1964 - 1969.
    [7]
    周 敏, 杜延军, 王 非. 地层沉陷中埋地 HDPE 管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253-262. (ZHOU Min, DU Yan-jun, WANG Fei, et al. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 253-262. (in Chinese))
    [8]
    张治国, 黄茂松, 张孟喜, 等. 层状地基中盾构隧道开挖非均匀收敛引起临近管道变形预测[J]. 岩石力学与工程学报, 2010, 29(9): 1867-1876. (ZHANG Zhi-guo, HUANG Mao-song, ZHANG Meng-xi, et al. Deformation prediction of adjacent pipeline due to non-uniform convergence of shield tunneling in layered soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1867-1876. (in Chinese))
    [9]
    ZHANG C R, YU J, HUANG M S. Effects of tunneling on existing pipelines in layered soils[J]. Computers and Geotechnics, 2012, 43(2): 12-25.
    [10]
    艾智勇, 张逸帆. 层状横观各向同性地基与刚性条形基础共同作用分析[J]. 岩土工程学报, 2014, 36(4): 752-756. (AI Zhi-yong, ZHANG Yi-fan. Interactive analysis of a rigid strip footing on transversely isotropic layered soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 752-756. (in Chinese))
    [11]
    李 波, 黄茂松. 层状地基中单桩一桩帽一土共同作用等效剪切位移法[J]. 土木建筑与环境工程, 2013, 35(1): 32-39. (LI Bo, HUANG Mao-song. An Equivalent shear displacement method of single capped pile in layered soil[J]. Journal of Civil Architectural and Environmental Engineering, 2013, 35(1): 32-39. (in Chinese))
    [12]
    AI Z Y, LI Z X, CHENG Y C. BEM analysis of elastic foundation beams on multilayered isotropic soils[J]. Soils and Foundations, 2014, 54(4): 667-674.
    [13]
    钟 阳. 多层弹性半空间问题解的精确刚度矩阵法[J]. 应用力学学报, 2008, 25(2): 316-319. (ZHONG Yang. Explicit solution of multilayer elastic half-space by exact stiffness matrix method[J]. Chinese Journal of Applied Mechanics, 2008, 25(2): 316-319. (in Chinese))
    [14]
    阳恩慧, 艾长发, 邱延峻. 采用刚度矩阵法的弹性层状体系数值解法[J]. 交通运输工程学报, 2014, 14(4): 14-24. (YANG En-hui, AI Chang-fa, QIU Yan-jun. Numerical method of multi-layer elastic system by using stiffness matrix method[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 14-24. (in Chinese))
    [15]
    艾智勇, 杨轲舒. 横观各向同性层状地基上弹性矩形板的参数研究[J]. 岩土工程学报, 2016, 38(8): 1442-1446. (AI Zhi-yong, YANG Ke-shu. Parametric study on an elastic rectangle plate on transversely isotropic multi-layered soils [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1442-1446. (in Chinese))
    [16]
    徐芝纶. 弹性力学[M]. 5版. 北京: 高等教育出版社, 2016: 212-226. (XU Zhi-lun. Elasticity[M]. 5th ed. Beijing: Higher Education Press, 2016: 212-226. (in Chinese))
    [17]
    李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013: 98-119. (LI Guang-xin, ZHANG Bing-yin, YU Yu-zhen. Soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013: 98-119. (in Chinese))
    [18]
    VESIC A B. Bending of beams resting on isotropic elastic solid[J]. Journal of the Engineering Mechanics Division, ASCE, 1961, 87(2): 35-53.
  • Related Articles

    [1]YANG Xin-xin, XI Bao-ping, HE Shui-xin, DONG Yun-sheng, XIN Guo-xu. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. DOI: 10.11779/CJGE202210019
    [2]TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
    [3]LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006
    [4]WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008
    [5]LI Zhen, ZHANG Jing-ke, LIU Dun, ZHANG Ke, LIU Jian-hui, LI Li, LIANG Xing-zhou. Experimental study on indoor simulated deterioration of sandstone of Xiaofowan statues at Dazu Rock Carvings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1513-1521. DOI: 10.11779/CJGE201908016
    [6]LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017
    [7]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
    [8]YANG Yong-ming, JU Yang, MAO Ling-tao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 864-872. DOI: 10.11779/CJGE201405008
    [9]LIU Dong-yan, ZHAO Bao-yun, ZHU Ke-shan, XUE Kai-xi. Direct tension creep behaviors of sandstone and improvement and application of Burgers model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1740-1744.
    [10]MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 140-143.
  • Cited by

    Periodical cited type(4)

    1. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
    2. 朱赞成,李纪伟,林法力,陈雰,孙德安,刘藤. 不同矿物成分下土样脱附曲线试验研究. 岩土工程学报. 2020(01): 175-180 . 本站查看
    3. 凌辉,王驹,刘月妙,高玉峰,陈伟明,佟强. 近场核素释放率对缓冲材料参数的敏感性研究. 辐射防护. 2019(05): 403-409 .
    4. 吴恒川,刘俊新,葛方东. 膨润土-砂混合物碱热耦合老化后的膨胀性能. 西南科技大学学报. 2019(04): 51-56 .

    Other cited types(5)

Catalog

    Article views (278) PDF downloads (213) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return