Citation: | YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, CAO Zhen-zhong, XU Hong-xuan. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777-785. DOI: 10.11779/CJGE201805001 |
[1] |
陈龙伟, 袁晓铭, 孙 锐. 2011年新西兰Mw6.3地震液化及岩土震害评述[J]. 世界地震工程, 2013, 29(3): 1-9. (CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese))
|
[2] |
李兆焱, 袁晓铭. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 世界地震工程, 2016, 32(3): 1-7. (LI Zhao-yan, YUAN Xiao-ming. Seismic damage summarize of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. World Earthquake Engineering, 2016, 32(3): 1-7. (in Chinese))
|
[3] |
谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011. (XIE Ding-yi. Soil dynamics[M]. Beijing: China Higher Education Press, 2011. (in Chinese))
|
[4] |
KOESTER P J, DANIEL C, ANDERSON M. In situ investigation of liquefied gravels at Seward, Alaska[J]. Innovations and Applications in Geotechnical Site Characterization, 2000, GSP 97: 33-48.
|
[5] |
LIN P, CHANG C, CHANG W. Characterization of liquefaction resistance in gravelly soil: large hammer penetration test and shear wave velocity approach[J]. Soil Dynamics and Earthquake Engineering, 2004(24): 675-687.
|
[6] |
WONG R T, SEED H B, CHAN C K. Liquefaction of gravelly soils under cyclic loading conditions[R]. Report No. UCB/EERC-74/11. Berkeley: University of California, Berkeley, 1974.
|
[7] |
王昆耀, 常亚屏, 陈 宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000(2): 37-41. (WANG Kun-yao, CHANG Ya-ping, CHEN Ning. Experimental study on liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000(2): 37-41. (in Chinese))
|
[8] |
王志华, 周恩全, 吕 丛, 等. 基于流动性的饱和砂砾土液化机理[J]. 岩土工程学报, 2013, 35(10): 1816-1822. (WANG Zhi-hua, ZHOU En-quan, LÜ Cong, et al. Liquefaction mechanism of saturated gravelly soils based on flowing property[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1816-1822. (in Chinese))
|
[9] |
陈国兴, 孙 田, 王炳辉, 等. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140-2147. (CHEN Guo-xing, SUN Tian, WANG Bing-hui, et al. Undrained cyclic failure mechanism and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2147. (in Chinese))
|
[10] |
康 飞, 彭 涛, 杨秀萍. 基于剪切波速与神经网络的砂砾土地震液化判别[J]. 地震工程与工程振动, 2014, 31(1): 110-116. (KANG Fei, PENG Tao, YANG Xiu-ping. Gravel soil liquefaction evaluation using artificial neural networks with shear wave velocity[J]. Earthquake Engineering and Engineering Vibration, 2014, 31(1): 110-116. (in Chinese))
|
[11] |
EVANS D M, SEED H B. Undrained cyclic triaxial testing of gravels-the effect of membrane compliance[R]. Report No. UCB/EERC-87/08. Berkeley: University of California, 1987.
|
[12] |
EVANS D M, ZHOU Sheng-ping. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
|
[13] |
袁晓铭, 曹振中. 砂砾层液化判别的基本方法及计算公式,岩土工程学报, 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and calculational formula for evaluation of gravel soils liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
|
[14] |
曹振中, 袁晓铭. 砂砾层液化的剪切波速判别方法[J]. 岩石力学与工程学报, 2010, 29(5): 943-951. (CAO Zhen-zhong, YUAN Xiao-ming. Shear waves velocity-based approach for evaluation gravel soils liquefaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 943-951. (in Chinese))
|
[15] |
曹振中, 袁晓铭. 砾性土液化原理与判别技术——以汶川8.0级地震为背景[M]. 北京: 科学出版社, 2015. (CAO Zhen-zhong, YUAN Xiao-ming. Principle and evaluation technique of gravelly soils liquefaction[M]. Beijing: Science Press, 2015. (in Chinese))
|
[16] |
地球科学大词典编委会. 地球科学大词典[M]. 北京: 地质出版社, 2005. (Earth Science Dictionary Committee. Earth science dictionary[M]. Beijing: Geological Publishing House, 2005. (in Chinese))
|
[17] |
汪云龙, 袁晓铭, 陈龙伟. 基于弯曲元技术的无黏性土剪切波速与相对密度联合测试方法[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3418-3423. (WANG Yun-long, YUAN Xiao-ming, CHEN Long-wei. A measurement method for the relationship between shear wave velocity and relative density of cohesionless soils using Bender Elements technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3418-3423. (in Chinese))
|
[18] |
中国科学院工程力学研究所. 海城地震震害[M]. 北京:地震出版社, 1979. (Institute of Engineering Mechanics. The Haicheng earthquake damages[M]. Beijing: Seismological Press, 1979. (in Chinese))
|
[19] |
刘令瑶, 李桂芬, 丙东屏. 密云水库白河主坝保护层地震破坏及砂料振动液化特性[M]// 水利水电科学研究院论文集第8集(岩土工程). 北京: 水利出版社, 1982: 46-54. (LIU Ling-yao, LI Gui-fen, BING Dong-ping. Earthquake damage of Baihe Dam and liquefaction characteristics of sand and gravel materials[M]// Volume 8 Collected Papers of China Institute of Water Resources and Hydropower Research. Beijing: China Waterpower Press, 1982: 46-54. (in Chinese))
|
[20] |
汪闻韶, 常亚屏, 左秀泓. 饱和砂砾料在振动和往返加荷下的液化特性[M]// 水利水电科学研究院论文集第23集. 北京: 水利出版社, 1986: 195-203. (WANG Wen-shao, CHANG Ya-ping, ZUO Xiu-hong. Liquefaction characteristics of saturated sand-gravels under vibration and cyclic loading[M]// Volume 23 Collected Papers of China Institute of Water Resources and Hydropower Research, Beijing: China Waterpower Press, 1986: 195-203. (in Chinese))
|
[21] |
SIROVICH L. Repetitive liquefaction at a gravelly site and liquefaction in overconsolidated sands[J]. Soils and Foundations, 1996, 36(4): 23-34.
|
[22] |
YOUD T L, HARP E L, KEEFER D K, et al. The borah peak, idaho earthquake of October 28, 1983 Liquefaction[J]. Earthquake Spectra, 1985, 2(1): 71-89.
|
[23] |
YEGIAN M K, GHAHRAMAN V G, HARUTIUNYAN R N. Liquefaction and embankment failure case histories, 1988 Armenia Earthquake[J]. Journal of Geotechnical Engineering, 1994, 120(3): 581-596.
|
[24] |
KOKUSHO T, TANAKA Y, KAWAI T, et al. Case study of rock debris avalanche gravel liquefaction during 1993 Hokkaido-Nansei-Oki earthquake[J]. Soils and Foundations, 1995, 35(3): 83-95.
|
[25] |
HATANAKA M, UCHIDA A, OHARA J. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake[J]. Soils and Foundations, 1997, 37(3): 107-115.
|
[1] | YANG Xin-xin, XI Bao-ping, HE Shui-xin, DONG Yun-sheng, XIN Guo-xu. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. DOI: 10.11779/CJGE202210019 |
[2] | TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012 |
[3] | LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006 |
[4] | WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008 |
[5] | LI Zhen, ZHANG Jing-ke, LIU Dun, ZHANG Ke, LIU Jian-hui, LI Li, LIANG Xing-zhou. Experimental study on indoor simulated deterioration of sandstone of Xiaofowan statues at Dazu Rock Carvings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1513-1521. DOI: 10.11779/CJGE201908016 |
[6] | LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017 |
[7] | KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018 |
[8] | YANG Yong-ming, JU Yang, MAO Ling-tao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 864-872. DOI: 10.11779/CJGE201405008 |
[9] | LIU Dong-yan, ZHAO Bao-yun, ZHU Ke-shan, XUE Kai-xi. Direct tension creep behaviors of sandstone and improvement and application of Burgers model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1740-1744. |
[10] | MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 140-143. |
1. |
王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
![]() | |
2. |
朱赞成,李纪伟,林法力,陈雰,孙德安,刘藤. 不同矿物成分下土样脱附曲线试验研究. 岩土工程学报. 2020(01): 175-180 .
![]() | |
3. |
凌辉,王驹,刘月妙,高玉峰,陈伟明,佟强. 近场核素释放率对缓冲材料参数的敏感性研究. 辐射防护. 2019(05): 403-409 .
![]() | |
4. |
吴恒川,刘俊新,葛方东. 膨润土-砂混合物碱热耦合老化后的膨胀性能. 西南科技大学学报. 2019(04): 51-56 .
![]() |