• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, CAO Zhen-zhong, XU Hong-xuan. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777-785. DOI: 10.11779/CJGE201805001
Citation: YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, CAO Zhen-zhong, XU Hong-xuan. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777-785. DOI: 10.11779/CJGE201805001

Necessary trigger conditions of liquefaction for gravelly soil layers

More Information
  • Revised Date: February 20, 2017
  • Published Date: May 24, 2018
  • The liquefaction of the natural gravelly soils is a new problem beyond the existing awareness and codes, and the trigger conditions of liquefaction are critical. It is the most reliable to extract the relevant knowledge from field investigation of earthquake damages. In view of the world's largest scale of gravelly soil liquefaction in the 2008 Wenchuan earthquake, using the post-earthquake field investigation data from the meizoseismal area in the Wenchuan earthquake and the historical documents on liquefaction of gravelly soils in the world, the necessary trigger conditions for liquefaction of gravelly soils and the relevant characteristic parameters are studied. The analytical results indicate: (1) The minimum ground shaking of 0.15g is essential to trigger liquefaction of natural gravelly soils, yet the liquefaction of massive gravelly soils requires 0.20g to 0.40g of ground shaking intensity; (2) The most natural gravelly soil layers are very loose. Even though the gravelly soils can be compacted with the increasing ground shaking, the compacted gravelly soils are still slightly dense. (3) The gravel contents of the liquefied soils can reach 85% and even larger in reality, and they do not decrease with the decreasing seismic intensity; (4) The layers of gravelly soils with high shear wave velocity can be liquefied. The shear wave velocities dividing different compactions for sands and gravels are different, and the liquefaction evaluation methods for sand cannot be applied in gravelly soils. (5) The existence of a cap of overburden low- permeability and a non-liquefiable layer with minimum 0.5 m in thickness is a necessary condition for possibility of liquefaction of gravelly soils, which can be defined as the cap effect. (6) The gap for drainage between the underground water table and the overburden cohesive layer cannot be large, which is another necessary condition for possible occurrence of liquefaction of gravelly soils, and the thickness should be less than 2.0 m, which can be defined as the gap effect. (7) Different from liquefaction evaluation of sandy soils, the buried conditions of layers of gravelly soils must be considered in liquefaction evaluation, otherwise the liquefaction possibility of sites is easily misjudged.
  • [1]
    陈龙伟, 袁晓铭, 孙 锐. 2011年新西兰Mw6.3地震液化及岩土震害评述[J]. 世界地震工程, 2013, 29(3): 1-9. (CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese))
    [2]
    李兆焱, 袁晓铭. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 世界地震工程, 2016, 32(3): 1-7. (LI Zhao-yan, YUAN Xiao-ming. Seismic damage summarize of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. World Earthquake Engineering, 2016, 32(3): 1-7. (in Chinese))
    [3]
    谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011. (XIE Ding-yi. Soil dynamics[M]. Beijing: China Higher Education Press, 2011. (in Chinese))
    [4]
    KOESTER P J, DANIEL C, ANDERSON M. In situ investigation of liquefied gravels at Seward, Alaska[J]. Innovations and Applications in Geotechnical Site Characterization, 2000, GSP 97: 33-48.
    [5]
    LIN P, CHANG C, CHANG W. Characterization of liquefaction resistance in gravelly soil: large hammer penetration test and shear wave velocity approach[J]. Soil Dynamics and Earthquake Engineering, 2004(24): 675-687.
    [6]
    WONG R T, SEED H B, CHAN C K. Liquefaction of gravelly soils under cyclic loading conditions[R]. Report No. UCB/EERC-74/11. Berkeley: University of California, Berkeley, 1974.
    [7]
    王昆耀, 常亚屏, 陈 宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000(2): 37-41. (WANG Kun-yao, CHANG Ya-ping, CHEN Ning. Experimental study on liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000(2): 37-41. (in Chinese))
    [8]
    王志华, 周恩全, 吕 丛, 等. 基于流动性的饱和砂砾土液化机理[J]. 岩土工程学报, 2013, 35(10): 1816-1822. (WANG Zhi-hua, ZHOU En-quan, LÜ Cong, et al. Liquefaction mechanism of saturated gravelly soils based on flowing property[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1816-1822. (in Chinese))
    [9]
    陈国兴, 孙 田, 王炳辉, 等. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140-2147. (CHEN Guo-xing, SUN Tian, WANG Bing-hui, et al. Undrained cyclic failure mechanism and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2147. (in Chinese))
    [10]
    康 飞, 彭 涛, 杨秀萍. 基于剪切波速与神经网络的砂砾土地震液化判别[J]. 地震工程与工程振动, 2014, 31(1): 110-116. (KANG Fei, PENG Tao, YANG Xiu-ping. Gravel soil liquefaction evaluation using artificial neural networks with shear wave velocity[J]. Earthquake Engineering and Engineering Vibration, 2014, 31(1): 110-116. (in Chinese))
    [11]
    EVANS D M, SEED H B. Undrained cyclic triaxial testing of gravels-the effect of membrane compliance[R]. Report No. UCB/EERC-87/08. Berkeley: University of California, 1987.
    [12]
    EVANS D M, ZHOU Sheng-ping. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [13]
    袁晓铭, 曹振中. 砂砾层液化判别的基本方法及计算公式,岩土工程学报, 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and calculational formula for evaluation of gravel soils liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [14]
    曹振中, 袁晓铭. 砂砾层液化的剪切波速判别方法[J]. 岩石力学与工程学报, 2010, 29(5): 943-951. (CAO Zhen-zhong, YUAN Xiao-ming. Shear waves velocity-based approach for evaluation gravel soils liquefaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 943-951. (in Chinese))
    [15]
    曹振中, 袁晓铭. 砾性土液化原理与判别技术——以汶川8.0级地震为背景[M]. 北京: 科学出版社, 2015. (CAO Zhen-zhong, YUAN Xiao-ming. Principle and evaluation technique of gravelly soils liquefaction[M]. Beijing: Science Press, 2015. (in Chinese))
    [16]
    地球科学大词典编委会. 地球科学大词典[M]. 北京: 地质出版社, 2005. (Earth Science Dictionary Committee. Earth science dictionary[M]. Beijing: Geological Publishing House, 2005. (in Chinese))
    [17]
    汪云龙, 袁晓铭, 陈龙伟. 基于弯曲元技术的无黏性土剪切波速与相对密度联合测试方法[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3418-3423. (WANG Yun-long, YUAN Xiao-ming, CHEN Long-wei. A measurement method for the relationship between shear wave velocity and relative density of cohesionless soils using Bender Elements technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3418-3423. (in Chinese))
    [18]
    中国科学院工程力学研究所. 海城地震震害[M]. 北京:地震出版社, 1979. (Institute of Engineering Mechanics. The Haicheng earthquake damages[M]. Beijing: Seismological Press, 1979. (in Chinese))
    [19]
    刘令瑶, 李桂芬, 丙东屏. 密云水库白河主坝保护层地震破坏及砂料振动液化特性[M]// 水利水电科学研究院论文集第8集(岩土工程). 北京: 水利出版社, 1982: 46-54. (LIU Ling-yao, LI Gui-fen, BING Dong-ping. Earthquake damage of Baihe Dam and liquefaction characteristics of sand and gravel materials[M]// Volume 8 Collected Papers of China Institute of Water Resources and Hydropower Research. Beijing: China Waterpower Press, 1982: 46-54. (in Chinese))
    [20]
    汪闻韶, 常亚屏, 左秀泓. 饱和砂砾料在振动和往返加荷下的液化特性[M]// 水利水电科学研究院论文集第23集. 北京: 水利出版社, 1986: 195-203. (WANG Wen-shao, CHANG Ya-ping, ZUO Xiu-hong. Liquefaction characteristics of saturated sand-gravels under vibration and cyclic loading[M]// Volume 23 Collected Papers of China Institute of Water Resources and Hydropower Research, Beijing: China Waterpower Press, 1986: 195-203. (in Chinese))
    [21]
    SIROVICH L. Repetitive liquefaction at a gravelly site and liquefaction in overconsolidated sands[J]. Soils and Foundations, 1996, 36(4): 23-34.
    [22]
    YOUD T L, HARP E L, KEEFER D K, et al. The borah peak, idaho earthquake of October 28, 1983 Liquefaction[J]. Earthquake Spectra, 1985, 2(1): 71-89.
    [23]
    YEGIAN M K, GHAHRAMAN V G, HARUTIUNYAN R N. Liquefaction and embankment failure case histories, 1988 Armenia Earthquake[J]. Journal of Geotechnical Engineering, 1994, 120(3): 581-596.
    [24]
    KOKUSHO T, TANAKA Y, KAWAI T, et al. Case study of rock debris avalanche gravel liquefaction during 1993 Hokkaido-Nansei-Oki earthquake[J]. Soils and Foundations, 1995, 35(3): 83-95.
    [25]
    HATANAKA M, UCHIDA A, OHARA J. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake[J]. Soils and Foundations, 1997, 37(3): 107-115.
  • Related Articles

    [1]YANG Xin-xin, XI Bao-ping, HE Shui-xin, DONG Yun-sheng, XIN Guo-xu. Fracture characteristics and pore connectivity of sandstone under thermal shock[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1925-1934. DOI: 10.11779/CJGE202210019
    [2]TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
    [3]LI Guo-wei, WANG Jia-yi, CHEN Wei, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Influences of wetting-drying cycles on expansive soils improved with disintegrated sandstone with different particle size groups[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 643-651. DOI: 10.11779/CJGE202204006
    [4]WU Huan-ran, LIU Han-long, ZHAO Ji-dong, XIAO Yang. Multiscale analyses of failure pattern transition in high-porosity sandstones[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2222-2229. DOI: 10.11779/CJGE202012008
    [5]LI Zhen, ZHANG Jing-ke, LIU Dun, ZHANG Ke, LIU Jian-hui, LI Li, LIANG Xing-zhou. Experimental study on indoor simulated deterioration of sandstone of Xiaofowan statues at Dazu Rock Carvings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1513-1521. DOI: 10.11779/CJGE201908016
    [6]LIU Xin-rong, LI Dong-liang, ZHANG Liang, WANG Zhen. Influence of wetting-drying cycles on mechanical properties and microstructure of shaly sandstone[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1291-1300. DOI: 10.11779/CJGE201607017
    [7]KONG Qian, WANG Huan-ling, XU Wei-ya. Experimental study on permeability and porosity evolution of sandstone under cyclic loading and unloading[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1893-1900. DOI: 10.11779/CJGE201510018
    [8]YANG Yong-ming, JU Yang, MAO Ling-tao. Growth distribution laws and characterization methods of cracks of compact sandstone subjected to triaxial stress[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 864-872. DOI: 10.11779/CJGE201405008
    [9]LIU Dong-yan, ZHAO Bao-yun, ZHU Ke-shan, XUE Kai-xi. Direct tension creep behaviors of sandstone and improvement and application of Burgers model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1740-1744.
    [10]MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 140-143.
  • Cited by

    Periodical cited type(4)

    1. 王琼,张佳南,高岑,苏薇,刘樟荣,叶为民. 基于梯度提升决策树算法的膨润土膨胀力预测. 世界核地质科学. 2023(03): 775-786 .
    2. 朱赞成,李纪伟,林法力,陈雰,孙德安,刘藤. 不同矿物成分下土样脱附曲线试验研究. 岩土工程学报. 2020(01): 175-180 . 本站查看
    3. 凌辉,王驹,刘月妙,高玉峰,陈伟明,佟强. 近场核素释放率对缓冲材料参数的敏感性研究. 辐射防护. 2019(05): 403-409 .
    4. 吴恒川,刘俊新,葛方东. 膨润土-砂混合物碱热耦合老化后的膨胀性能. 西南科技大学学报. 2019(04): 51-56 .

    Other cited types(5)

Catalog

    Article views PDF downloads Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return