• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CHEN Hong-juan, LI Xiao-jun, YAN Wei-ming, CHEN Shi-cai, ZHANG Xue-ming. Shaking table tests on sawdust-mixed clay site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2068-2077. DOI: 10.11779/CJGE201711015
Citation: CHEN Hong-juan, LI Xiao-jun, YAN Wei-ming, CHEN Shi-cai, ZHANG Xue-ming. Shaking table tests on sawdust-mixed clay site[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2068-2077. DOI: 10.11779/CJGE201711015

Shaking table tests on sawdust-mixed clay site

More Information
  • Received Date: September 04, 2016
  • Published Date: November 24, 2017
  • A series of shaking table tests on a sawdust-mixed clay site model are conducted under uniform earthquake excitation using the shaking table testing system with 9 sub-tables in Beijing University of Technology. The tests are performed using a rigid prefabricated continuous model box with dimensions of 7.7 meters long, 3.2 meters wide and 1.2 meters high. The test system is subjected to strong ground motions from El Centro record and Tianjin record. Through the horizontal longitudinal and horizontal transverse free-field shaking table tests, the boundary effect of the model box is investigated, and its dynamic characteristics and variation laws are given. The partial test results are analyzed, including the peak ground accelerations and their amplification factors, acceleration time histories and their Fourier spectra for the site responses. The test results indicate that the boundary effect of the model box is small because there is only a slight difference in the accelerations of site responses at the same elevation. With the increase of intensity of the input ground motion, the peak ground acceleration of the site response at the same test point increases, but its acceleration amplification factor decreases, and the main frequency components move from high to low frequency. It means that the soil becomes softer and the soil modulus decreases gradually with the increase of the intensity of input ground motion.
  • [1]
    刘晶波, 赵冬冬, 张小波, 等. 地基自由场离心机振动台模型试验研究[J]. 岩土工程学报, 2013, 35(5): 980-987. (LIU Jing-bo, ZHAO Dong-dong, ZHANG Xiao-bo, et al. Dynamic centrifuge model tests on an unconfined soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 980-987. (in Chinese))
    [2]
    MEYMAND P J. Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay[D]. Berkeley: University of California, 1998.
    [3]
    庄海洋. 土-地下结构非线性动力相互作用及其大型振动台试验研究[D]. 南京: 南京工业大学, 2006. (ZHUANG Hai-yang. Study on nonlinear dynamic soil-underground structure interaction and its large-size shaking table test[D]. Nanjing: Nanjing University of Technology, 2006. (in Chinese))
    [4]
    CHEN J, SHI X J, LI J. Shaking table test of utility tunnel under non-uniform earthquake wave excitation[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11): 1400-1416.
    [5]
    CHEN G X, CHEN S, ZUO X, et al. Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 13-28.
    [6]
    张强勇, 李术才, 郭小红, 等. 铁晶砂胶结新型岩土相似材料的研制及其应用[J]. 岩土力学, 2008, 29(8): 2126-2130. (ZHANG Qiang-yong, LI Shu-cai, GUO Xiao-hong, et al. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application[J]. Rock and Soil Mechanics, 2008, 29(8): 2126-2130. (in Chinese))
    [7]
    SENETAKIS K, ANASTASIADIS A, PITILAKIS K. Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes[J]. Soil Dynamics and Earthquake Engineering, 2012, 33: 38-53.
    [8]
    NAKHAEI A, MARANDI S M, SANI KERMANI S, et al. Dynamic properties of granular soils mixed with granulated rubber[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 124-132.
    [9]
    尚守平, 刘方成, 卢华喜, 等. 振动台试验模型地基土的设计与试验研究[J]. 地震工程与工程振动, 2006, 26(4): 199-204. (SHANG Shou-ping, LIU Fang-cheng, LU Hua-xi, et al. Design and experimental study of a model soil used for shaking table test[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(4): 199-204. (in Chinese))
    [10]
    徐炳伟. 大型复杂结构-桩-土振动台模型试验研究[D]. 天津: 天津大学, 2009. (XU Bing-wei. Shaking table test studying large-scale soil-pile-complex structure interaction[D]. Tianjin: Tianjin University, 2009. (in Chinese))
    [11]
    陈红娟, 闫维明, 陈适才, 等. 小比例尺地下结构振动台试验模型土的设计与试验研究[J]. 地震工程与工程振动, 2015, 35(3): 59-66. (CHEN Hong-juan, YAN Wei-ming, CHEN Shi-cai, et al. Design and experimental research on model soil used for shaking table test of a small scale underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 59-66. (in Chinese))
    [12]
    TURAN A, HINCHBERGER S D, EL NAGGAR H. Design and commissioning of a laminar soil container for use on small shaking tables[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(2): 404-414.
    [13]
    王永志, DANIEL W Wilson, MOHAMMAD Khosravi, 等. 动力离心模型试验循环剪应力-剪应变反演方法对比[J]. 岩土工程学报, 2016, 38(2): 271-277. (WANG Yong-zhi, Daniel W Wilson, Mohammad Khosravi, et al. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. (in Chinese))
    [14]
    KAGAWA T, SATO M, MINOWA C, et al. Centrifuge simulation of large-scale shaking table tests: case studies[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 663-672.
    [15]
    HIROFUMI M. Seismic design of foundation and underground structure: new version [M]. Fukuoka: Kyushu University Publication, 2001.
    [16]
    邹万杰, 瞿伟廉. 基于频响函数和遗传算法的结构损伤识别研究[J]. 振动与冲击, 2008, 27(12): 28-30. (ZOU Wan-jie, QU Wei-lian. Structural damage identification based on frequency response function and genetic algorithm[J]. Journal of Vibration and Shock, 2008, 27(12): 28-30. (in Chinese))
  • Related Articles

    [1]FENG Da-kuo, ZHANG Jian-min. Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001
    [2]LIN Gao, LI Zhi-yuan, LI Jian-bo. Dynamic soil-structure interaction under complex soil environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1573-1580. DOI: 10.11779/CJGE202109001
    [3]BAI Hai-wei, WANG Jian-chen, LIU Yun-liang, ZHANG Ding-li. Safety control and mechanical response of existing underground structures induced by excavation of new tunnels under construction[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 874-884. DOI: 10.11779/CJGE201905010
    [4]ZHAO Jian-ming, LIU Xiao-sheng, YANG Yu-sheng, LI Hong-jun, YANG Zheng-quan. Criteria for seismic safety evaluation and maximum aseismic capability of high concrete face rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2254-2261. DOI: 10.11779/CJGE201512015
    [5]XIANG Yan. Influence of temperature stress on internal force and deformation of retaining structures for deep excavations[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 64-69. DOI: 10.11779/CJGE2014S2011
    [6]SHI Cheng-hua, LEI Ming-feng, PENG Li-min, YANG Wei-chao, DING Zu-de. In-situ monitoring and analysis of mechanical characteristics and deformation of bottom structure of tunnels[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 879-884.
    [7]LI Neng-hui, WANG Jun-li, MI Zhan-kuan, LI Deng-hua. Connotation of deformation safety of high concrete face rockfill dams and its application[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 193-201.
    [8]LI Hong-tao, YANG Xing-guo, LU Wen-bo, SHU Da-qiang, ZHOU Jia-wen. Safety assessment for structures under blasting vibration based on equivalent peak energy[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(5): 821.
    [9]CHEN Shengshui, FENG Jiaji, YUAN Hui. Research on key techniques of facing sandy gravel dam[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 16-20.
    [10]Liu Lihua, Zhou Jianbo, Lei Yan, Liu Zhiming. Study on stress calculation for the structure with step rock foundation and block power plant[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 573-577.
  • Cited by

    Periodical cited type(5)

    1. 赵嘉成,罗宇轩,张道博,包查润,冯鹏. 基于原位资源利用的火星基地建造方案. 工业建筑. 2024(01): 102-114 .
    2. 丁烈云,周诚,高玉月,韩文彬. 地外建造研究进展与科学技术挑战. 土木工程学报. 2024(06): 26-42 .
    3. 蒋明镜,石安宁,奚邦禄,黄伟,吕雷. 火星探测器着陆试验场地研造. 岩土工程学报. 2023(04): 826-832 . 本站查看
    4. 吴琼,李顺群,黄雄飞,李丽君,陈之祥. 土体温度场物理模拟用土的制备方法研究. 地下空间与工程学报. 2022(05): 1573-1579 .
    5. 卢谅,何兵,肖亮,王宗建,马书文,林浩鑫. 基于透明土的成层土中CPT贯入试验研究. 岩土工程学报. 2022(12): 2215-2224 . 本站查看

    Other cited types(2)

Catalog

    Article views (278) PDF downloads (182) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return