• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Da-kuo, ZHANG Jian-min. Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001
Citation: FENG Da-kuo, ZHANG Jian-min. Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001

Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface

More Information
  • Received Date: August 27, 2021
  • Available Online: December 08, 2022
  • A series of interface tests between gravel and structure are conducted in stress-controlled two-way circular cyclic shear path by using the large-scale direct-shear apparatus, and the effects of shear stress amplitude on the tangential deformation performances of the interface, including tangential displacement, non-coaxial angle and shear flexibility, are addressed. The test results show that the interface presents distinct 3D behavior subjected to two-way circular cycling of shear stress, such as distinct tangential displacements in the x and y directions and their migration, non-coaxial angle, shear flexibility and shear coupling effect. The tangential displacement amplitude and the peak shear flexibility almost remain invariable with cyclic shearing when the shear stress amplitude reaches the critical stress amplitude. The unity of opposites is discovered between the stabilized non-coaxial angle and the initial peak shear flexibility of the interface. The shear stress amplitude primarily impacts the magnitudes of the performance parameters of the interface, instead of their relationship patterns. Increasing the shear stress amplitude results in magnified tangential displacement amplitudes in the x and y directions, enlarged migration of the tangential displacements towards the negative directions, increased peak shear flexibility and decreased stabilized non-coaxial angle. The stabilized non-coaxial angle and the initial peak shear flexibility have a close relationship with the shear stress amplitude, and can be described using the proposed formulas, which may provide a sound basis for the 3D constitutive modeling of the soil-structure interface.
  • [1]
    POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339–353.
    [2]
    UESUGI M, KISHIDA H. Influential factors of friction between steel and dry sands[J]. Soils and Foundations, 1986, 26(2): 33–46.
    [3]
    TSUBAKIHARA Y, KISHIDA H. Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses[J]. Soils and Foundations, 1993, 33(2): 1–13.
    [4]
    FAKHARIAN K. Three-dimensional Monotonic and Cyclic Behavior of Sand-Steel Interfaces: Testing and Modeling[D]. Ottawa: University of Ottawa, 1996.
    [5]
    胡黎明, 濮家骝. 土与结构物接触面物理力学特性试验研究[J]. 岩土工程学报, 2001, 23(4): 431–435. doi: 10.3321/j.issn:1000-4548.2001.04.010

    HU Li-ming, PU Jia-liu. Experimental study on mechanical characteristics of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 431–435. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.010
    [6]
    张嘎, 张建民. 循环荷载作用下粗粒土与结构接触面变形特性的试验研究[J]. 岩土工程学报, 2004, 26(2): 254–258. doi: 10.3321/j.issn:1000-4548.2004.02.020

    ZHANG Ga, ZHANG Jian-min. Experimental study on cyclic behavior of interface between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 254–258. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.02.020
    [7]
    冯大阔, 张嘎, 张建民, 等. 常刚度条件下粗粒土与结构接触面三维力学特性试验研究[J]. 岩土工程学报, 2009, 31(10): 1571–1577. doi: 10.3321/j.issn:1000-4548.2009.10.015

    FENG Da-kuo, ZHANG Ga, ZHANG Jian-min, et al. Experimental study on 3D cyclic behaviors of soil-structure interface under constant normal stiffness condition[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1571–1577. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.015
    [8]
    FARHADI B, LASHKARI A. Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces[J]. Soils and Foundations, 2017, 57(1): 111–125.
    [9]
    MARTINEZ A, FROST J D. The influence of surface roughness form on the strength of sand–structure interfaces[J]. Géotechnique Letters, 2017, 7(1): 104–111. doi: 10.1680/jgele.16.00169
    [10]
    FENG D K, ZHANG J M, HOU W J. Three-dimensional direct-shear behaviors of a gravel-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12): 04018095.
    [11]
    杨忠平, 蒋源文, 李诗琪, 等. 土石混合体—基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020, 42(10): 1947–1954. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18332.shtml

    YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, et al. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947–1954. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18332.shtml
    [12]
    LI Y H, LV M F, GUO Y C, et al. Effects of the soil water content and relative roughness on the shear strength of silt and steel plate interface[J]. Measurement, 2021, 174: 109003. doi: 10.1016/j.measurement.2021.109003
    [13]
    CLOUGH G W, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. ASCE Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657–1673. doi: 10.1061/JSFEAQ.0001713
    [14]
    殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 16(3): 14–22. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9769.shtml

    YIN Zong-ze, ZHU Hong, XU Guo-hua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 14–22. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9769.shtml
    [15]
    王伟, 卢廷浩, 宰金珉, 等. 土与混凝土接触面反向剪切单剪试验[J]. 岩土力, 2009, 30(5): 1303–1306. doi: 10.3969/j.issn.1000-7598.2009.05.019

    WANG Wei, LU Ting-hao, ZAI Jin-min, et al. Negative shear test on soil-concrete interface using simple shear apparatus[J]. Rock and Soil Mechanics, 2009, 30(5): 1303–1306. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.05.019
    [16]
    陆勇, 周国庆, 夏红春, 等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学, 2013, 34(12): 3491–3499, 3526. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm

    LU Yong, ZHOU Guo-qing, XIA Hong-chun, et al. Effect of shape scale on characteristics of coarse grained soil-structural interface under medium and high pressures[J]. Rock and Soil Mechanics, 2013, 34(12): 3491–3499, 3526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm
    [17]
    朱俊高, 汪淼, 黄维, 等. 钢-土接触面位移与强度特性直剪试验[J]. 河海大学学报(自然科学版), 2021, 49(3): 265–271. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202103010.htm

    ZHU Jun-gao, WANG Miao, HUANG Wei, et al. Experimental study on displacement and strength behavior of interface between soil and steel using direct shear test[J]. Journal of Hohai University (Natural Sciences), 2021, 49(3): 265–271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202103010.htm
    [18]
    DEJONG J T, WHITE D J, RANDOLPH M F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry[J]. Soils and Foundations, 2006, 46(1): 15–28.
    [19]
    FENG D K, ZHANG J M, HOU W J. Role of normal stiffness in 3D cyclic behavior of gravel–steel interface from large-scale direct shear tests[J]. Acta Geotechnica, 2021, 16(1): 151–165.
    [20]
    DEJONG J T, RANDOLPH M F, WHITE D J. Interface load transfer degradation during cyclic loading: a microscale investigation[J]. Soils and Foundations, 2003, 43(4): 81–93.
    [21]
    冯大阔, 侯文峻, 张建民. 切向应力控制条件下粗粒土与结构接触面三维循环特性研究[J]. 岩石力学与工程学报, 2011, 30(12): 2574–2582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112024.htm

    FENG Da-kuo, HOU Wen-jun, ZHANG Jian-min. Test investigations on 3d stress-controlled cyclic behavior of gravel-structure interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2574–2582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112024.htm
    [22]
    张建民, 侯文峻, 张嘎, 等. 大型三维土与结构接触面试验机的研制与应用[J]. 岩土工程学报, 2008, 30(6): 889–894. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12887.shtml

    ZHANG Jian-min, HOU Wen-jun, ZHANG Ga, et al. Development and application of 3D soil-structure interface test apparatus[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 889–894. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12887.shtml
  • Related Articles

    [1]Study on shear stress - shear strain nonlinear response of wide-graded saturated coral soil site in dynamic centrifugal test[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240908
    [2]XIAO Xing, JI Dongwei, HANG Tianzhu, WU Qi, CHEN Guoxing. Cyclic threshold shear strains for pore water pressure generation and stiffness degradation in marine clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005
    [3]WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011
    [4]XU Rong-chao, JIN Yi-ding, LI Ri-yun, LI Zhen, ZHANG Sheng-zhe. Anisotropic characteristics of stress and strain thresholds of Longmaxi shale[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2291-2299. DOI: 10.11779/CJGE202112016
    [5]ZHENG Shan-suo, ZHANG Xiao-yu, LONG Li, CHEN Fang-ge, HE Jun, LI Ping. Frequency-dependent equivalent linearization method based on strain interval reduction theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1238-1244. DOI: 10.11779/CJGE202107008
    [6]ZHAO Ding-feng, RUAN Bin, CHEN Guo-xing, XU Ling-yu, ZHUANG Hai-yang. Validation of modified irregular loading-unloading rules based on Davidenkov skeleton curve and its equivalent shear strain algorithm implemented in ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 888-895. DOI: 10.11779/CJGE201705013
    [7]WANG Du-guo, ZHAO Cheng-gang. Two-dimensional equivalent linear seismic analysis of free field in layered half-space due to oblique incidence[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 554-561. DOI: 10.11779/CJGE201603020
    [8]WANG Yong-zhi, Daniel W Wilson, Mohammad Khosravi, YUAN Xiao-ming, C Guney Olgum. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. DOI: 10.11779/CJGE201602010
    [9]LIN Hang, XIONG wei, LI Zheng-ming. Embedded program for slip surface by shear strain of slopes and parametric analysis[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 52-56.
    [10]JIANG Tong, XING Hailing. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 218-224.
  • Cited by

    Periodical cited type(7)

    1. 何颖,尹奔驰,刘中宪,丁晓凡. 考虑土体非线性山-谷耦合复杂场地空间相关多点地震动模拟. 振动与冲击. 2024(16): 118-128+158 .
    2. 齐婉婉,孙锐. 基于动态时间规整的一维土层地震反应分析方法的定量评价. 地震工程学报. 2023(02): 346-354 .
    3. 齐婉婉,孙锐,郑桐,亓金磊. 融合XGBoost和SHAP的地表峰值加速度预测分析模型. 岩土工程学报. 2023(09): 1934-1943 . 本站查看
    4. 郭婷婷,陈龙伟,吴晓阳,袁晓铭,李瑞山. 等效线性化方法计算深厚土层地震反应的可靠性研究. 振动与冲击. 2023(18): 172-179 .
    5. 王竞雄,李鸿晶,邢浩洁. 水平成层场地地震反应的集中质量切比雪夫谱元分析方法. 地震学报. 2022(01): 76-86 .
    6. 彭晓钢,王寰宇,李有志. 考虑土体强度非线性的地震主动土压力分析. 建筑施工. 2021(06): 1135-1140 .
    7. 李金奎,汪洋,杨承源,庄文. 基于土体等效线性黏弹性模型的地下综合管廊地震响应. 灾害学. 2021(03): 64-70+76 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return