• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Da-kuo, ZHANG Jian-min. Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001
Citation: FENG Da-kuo, ZHANG Jian-min. Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 1959-1967. DOI: 10.11779/CJGE202211001

Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface

More Information
  • Received Date: August 27, 2021
  • Available Online: December 08, 2022
  • A series of interface tests between gravel and structure are conducted in stress-controlled two-way circular cyclic shear path by using the large-scale direct-shear apparatus, and the effects of shear stress amplitude on the tangential deformation performances of the interface, including tangential displacement, non-coaxial angle and shear flexibility, are addressed. The test results show that the interface presents distinct 3D behavior subjected to two-way circular cycling of shear stress, such as distinct tangential displacements in the x and y directions and their migration, non-coaxial angle, shear flexibility and shear coupling effect. The tangential displacement amplitude and the peak shear flexibility almost remain invariable with cyclic shearing when the shear stress amplitude reaches the critical stress amplitude. The unity of opposites is discovered between the stabilized non-coaxial angle and the initial peak shear flexibility of the interface. The shear stress amplitude primarily impacts the magnitudes of the performance parameters of the interface, instead of their relationship patterns. Increasing the shear stress amplitude results in magnified tangential displacement amplitudes in the x and y directions, enlarged migration of the tangential displacements towards the negative directions, increased peak shear flexibility and decreased stabilized non-coaxial angle. The stabilized non-coaxial angle and the initial peak shear flexibility have a close relationship with the shear stress amplitude, and can be described using the proposed formulas, which may provide a sound basis for the 3D constitutive modeling of the soil-structure interface.
  • [1]
    POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339–353.
    [2]
    UESUGI M, KISHIDA H. Influential factors of friction between steel and dry sands[J]. Soils and Foundations, 1986, 26(2): 33–46.
    [3]
    TSUBAKIHARA Y, KISHIDA H. Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses[J]. Soils and Foundations, 1993, 33(2): 1–13.
    [4]
    FAKHARIAN K. Three-dimensional Monotonic and Cyclic Behavior of Sand-Steel Interfaces: Testing and Modeling[D]. Ottawa: University of Ottawa, 1996.
    [5]
    胡黎明, 濮家骝. 土与结构物接触面物理力学特性试验研究[J]. 岩土工程学报, 2001, 23(4): 431–435. doi: 10.3321/j.issn:1000-4548.2001.04.010

    HU Li-ming, PU Jia-liu. Experimental study on mechanical characteristics of soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 431–435. (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.04.010
    [6]
    张嘎, 张建民. 循环荷载作用下粗粒土与结构接触面变形特性的试验研究[J]. 岩土工程学报, 2004, 26(2): 254–258. doi: 10.3321/j.issn:1000-4548.2004.02.020

    ZHANG Ga, ZHANG Jian-min. Experimental study on cyclic behavior of interface between soil and structure[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 254–258. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.02.020
    [7]
    冯大阔, 张嘎, 张建民, 等. 常刚度条件下粗粒土与结构接触面三维力学特性试验研究[J]. 岩土工程学报, 2009, 31(10): 1571–1577. doi: 10.3321/j.issn:1000-4548.2009.10.015

    FENG Da-kuo, ZHANG Ga, ZHANG Jian-min, et al. Experimental study on 3D cyclic behaviors of soil-structure interface under constant normal stiffness condition[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1571–1577. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.015
    [8]
    FARHADI B, LASHKARI A. Influence of soil inherent anisotropy on behavior of crushed sand-steel interfaces[J]. Soils and Foundations, 2017, 57(1): 111–125.
    [9]
    MARTINEZ A, FROST J D. The influence of surface roughness form on the strength of sand–structure interfaces[J]. Géotechnique Letters, 2017, 7(1): 104–111. doi: 10.1680/jgele.16.00169
    [10]
    FENG D K, ZHANG J M, HOU W J. Three-dimensional direct-shear behaviors of a gravel-structure interface[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(12): 04018095.
    [11]
    杨忠平, 蒋源文, 李诗琪, 等. 土石混合体—基岩界面剪切力学特性试验研究[J]. 岩土工程学报, 2020, 42(10): 1947–1954. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18332.shtml

    YANG Zhong-ping, JIANG Yuan-wen, LI Shi-qi, et al. Experimental study on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1947–1954. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18332.shtml
    [12]
    LI Y H, LV M F, GUO Y C, et al. Effects of the soil water content and relative roughness on the shear strength of silt and steel plate interface[J]. Measurement, 2021, 174: 109003. doi: 10.1016/j.measurement.2021.109003
    [13]
    CLOUGH G W, DUNCAN J M. Finite element analyses of retaining wall behavior[J]. ASCE Journal of the Soil Mechanics and Foundations Division, 1971, 97(12): 1657–1673. doi: 10.1061/JSFEAQ.0001713
    [14]
    殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 16(3): 14–22. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9769.shtml

    YIN Zong-ze, ZHU Hong, XU Guo-hua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 14–22. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract9769.shtml
    [15]
    王伟, 卢廷浩, 宰金珉, 等. 土与混凝土接触面反向剪切单剪试验[J]. 岩土力, 2009, 30(5): 1303–1306. doi: 10.3969/j.issn.1000-7598.2009.05.019

    WANG Wei, LU Ting-hao, ZAI Jin-min, et al. Negative shear test on soil-concrete interface using simple shear apparatus[J]. Rock and Soil Mechanics, 2009, 30(5): 1303–1306. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.05.019
    [16]
    陆勇, 周国庆, 夏红春, 等. 中、高压下粗粒土-结构接触面特性受结构面形貌尺度影响的试验研究[J]. 岩土力学, 2013, 34(12): 3491–3499, 3526. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm

    LU Yong, ZHOU Guo-qing, XIA Hong-chun, et al. Effect of shape scale on characteristics of coarse grained soil-structural interface under medium and high pressures[J]. Rock and Soil Mechanics, 2013, 34(12): 3491–3499, 3526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201312023.htm
    [17]
    朱俊高, 汪淼, 黄维, 等. 钢-土接触面位移与强度特性直剪试验[J]. 河海大学学报(自然科学版), 2021, 49(3): 265–271. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202103010.htm

    ZHU Jun-gao, WANG Miao, HUANG Wei, et al. Experimental study on displacement and strength behavior of interface between soil and steel using direct shear test[J]. Journal of Hohai University (Natural Sciences), 2021, 49(3): 265–271. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202103010.htm
    [18]
    DEJONG J T, WHITE D J, RANDOLPH M F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry[J]. Soils and Foundations, 2006, 46(1): 15–28.
    [19]
    FENG D K, ZHANG J M, HOU W J. Role of normal stiffness in 3D cyclic behavior of gravel–steel interface from large-scale direct shear tests[J]. Acta Geotechnica, 2021, 16(1): 151–165.
    [20]
    DEJONG J T, RANDOLPH M F, WHITE D J. Interface load transfer degradation during cyclic loading: a microscale investigation[J]. Soils and Foundations, 2003, 43(4): 81–93.
    [21]
    冯大阔, 侯文峻, 张建民. 切向应力控制条件下粗粒土与结构接触面三维循环特性研究[J]. 岩石力学与工程学报, 2011, 30(12): 2574–2582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112024.htm

    FENG Da-kuo, HOU Wen-jun, ZHANG Jian-min. Test investigations on 3d stress-controlled cyclic behavior of gravel-structure interface[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2574–2582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201112024.htm
    [22]
    张建民, 侯文峻, 张嘎, 等. 大型三维土与结构接触面试验机的研制与应用[J]. 岩土工程学报, 2008, 30(6): 889–894. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12887.shtml

    ZHANG Jian-min, HOU Wen-jun, ZHANG Ga, et al. Development and application of 3D soil-structure interface test apparatus[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 889–894. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12887.shtml
  • Related Articles

    [1]JIA Wei, LI Yao, GUO Zhanglong, TIAN Chaopeng. Model tests on soil deformation of surrounding soil of Luochuan tunnel[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 164-169. DOI: 10.11779/CJGE2024S10021
    [2]HAN Xingbo, CHEN Ziming, YE Fei, LIANG Xiaoming, FENG Haolan, XIA Tianhan. Model tests on disturbance characteristics of surrounding rock of loess shield tunnels during excavation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 968-977. DOI: 10.11779/CJGE20230054
    [3]ZHOU Yang, LAI Hongpeng, WANG Xingguang, KONG Jun, LI Zhilei, HONG Qiuyang. Experimental study on improving mechanical characteristics of initial support structure of deep buried large-span tunnels with long bolts or cables[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 853-863. DOI: 10.11779/CJGE20221533
    [4]HUANG Dawei, ZHAO Zhiqi, XU Changjie, LUO Wenjun, GENG Daxin, SHI Yufeng. Experimental study on influences of side grouting on deformation of shield tunnels under loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 510-518. DOI: 10.11779/CJGE20221422
    [5]ZHANG Yu-ting, AN Xiao-yu, JIN Ya-fei. Centrifugal model tests on settlement of structures caused by tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 54-57. DOI: 10.11779/CJGE2022S2012
    [6]XU Jing-min, ZHANG Ding-wen, LIU Song-yu. Tunneling-induced sandy ground deformation affected by surface framed structures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 602-612. DOI: 10.11779/CJGE202204002
    [7]LIU Xue-zeng, LAI Hao-ran, SANG Yun-long, DUAN Jun-ming, DING Shuang. Model tests on effect of bonded steel plate reinforcement of shield tunnels under different deformation conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2115-2123. DOI: 10.11779/CJGE202011017
    [8]CAI Yi, ZHANG Cheng-ping, MIN Bo, YANG Gong-biao. Deformation characteristics of ground with voids induced by shallow metro tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 534-543. DOI: 10.11779/CJGE201903016
    [9]LI Jiao-yang, LIU Wei, ZOU Jin-jie, ZHAO Yu, GONG Xiao-nan. Large-scale model tests on face instability of shallow shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 562-567. DOI: 10.11779/CJGE201803022
    [10]WANG Xiu-ying, TAN Zhong-sheng, LI Jian, DU Chao-wei. Laboratory tests on mechanical characteristics of fully and partially wrapped waterproof systems for tunnel lining[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 654-659.
  • Cited by

    Periodical cited type(5)

    1. 许志雄,朱要亮. 高应力状态下岩石蠕变离散元模拟研究. 水利与建筑工程学报. 2025(01): 131-135+153 .
    2. Jinzhi Luo,Yanyan Cai,Jin Yu,Jianzhi Zhang,Yaoliang Zhu,Yao Wei. Development and applications of the quasi-dynamic triaxial apparatus for deep rocks. Deep Underground Science and Engineering. 2024(01): 70-90 .
    3. 黄勤钲. 高应力状态下岩石蠕变本构模型的研究. 长春工程学院学报(自然科学版). 2024(03): 32-36 .
    4. 易雪枫,王宇,李鹏,蔡美峰. 疲劳–蠕变交互荷载下含软弱夹层空心圆柱花岗岩变形失稳特性试验研究. 岩石力学与工程学报. 2024(11): 2766-2780 .
    5. 李克升,刘传孝. 梯级等幅周期循环荷载作用下双裂隙黄砂岩力学特性试验研究. 岩石力学与工程学报. 2023(08): 1945-1958 .

    Other cited types(4)

Catalog

    Article views (205) PDF downloads (29) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return