Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Rong-chao, JIN Yi-ding, LI Ri-yun, LI Zhen, ZHANG Sheng-zhe. Anisotropic characteristics of stress and strain thresholds of Longmaxi shale[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2291-2299. DOI: 10.11779/CJGE202112016
Citation: XU Rong-chao, JIN Yi-ding, LI Ri-yun, LI Zhen, ZHANG Sheng-zhe. Anisotropic characteristics of stress and strain thresholds of Longmaxi shale[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2291-2299. DOI: 10.11779/CJGE202112016

Anisotropic characteristics of stress and strain thresholds of Longmaxi shale

More Information
  • Received Date: April 13, 2021
  • Available Online: November 30, 2022
  • Under the combined action of bedding plane and confining pressure, the anisotropic characteristics of the stress thresholds and the corresponding strains are one of the important factors affecting the brittle mechanical behaviors of shale. Taking Longmaxi formation shale as an example, the variation laws of stress-strain thresholds under different confining pressures and different bedding plane dip angles are analyzed. The results show that: (1) The crack initiation stressσci, damage stressσcd and peak stressσf increase approximately linearly with the increase of the confining pressure, while the closure stressσcc is not affected by the confining pressure. (2) The dip angle of bedding plane has a significant effect onσcd andσf, whileσcc andσci are not affected by the dip angle. Under the low confining pressure, the stress ratiosσcd/σf,σci/σf andσcc/σf fluctuate with the increase of the dip angle, and tend to be stable with the increase of the confining pressure. (3) The axial strains and radial strains corresponding to the stress thresholds show the same change rules with the increase of the confining pressure: the peak strain increases the fastest, followed by the damage strain, and the crack initiation strain is the smallest. (4) The axial strains and radial strains corresponding to the stress thresholds show the same change laws with the increase of the inclination angle: the peak strain decreases first and then increases with the increase of the inclination angle from 0° to 90°, and the closure strain, crack initiation strain and damage strain are not strongly related to the dip angle.
  • [1]
    侯振坤, 杨春和, 郭印同, 等. 单轴压缩下龙马溪组页岩各向异性特征研究[J]. 岩土力学, 2015, 36(9): 2541-2550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm

    HOU Zhen-kun, YANG Chun-he, GUO Yin-tong, et al. Experimental study on anisotropic properties of Longmaxi formation shale under uniaxial compression[J]. Rock and Soil Mechanics, 2015, 36(9): 2541-2550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201509015.htm
    [2]
    衡帅, 杨春和, 李芷, 等. 基于能量耗散的页岩脆性特征[J]. 中南大学学报(自然科学版), 2016, 47(2): 577-585. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm

    HENG Shuai, YANG Chun-he, LI Zhi, et al. Shale brittleness estimation based on energy dissipation[J]. Journal of Central South University (Science and Technology), 2016, 47(2): 577-585. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm
    [3]
    班宇鑫, 傅翔, 谢强, 等. 页岩巴西劈裂裂缝形态评价及功率谱特征分析[J]. 岩土工程学报, 2019, 41(12): 2307-2315. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm

    BAN Yu-xin, FU Xiang, XIE Qiang, et al. Evaluation of fracture morphology of shale in Brazilian tests and analysis of power spectral characteristics[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2307-2315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912023.htm
    [4]
    GENG Z, CHEN M, JIN Y, et al. Experimental study of brittleness anisotropy of shale in triaxial compression[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 510-518. doi: 10.1016/j.jngse.2016.10.059
    [5]
    汪虎, 郭印同, 王磊, 等.不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017, 38(9): 2496-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm

    WANG Hu, GUO Yin-tong, WANG Lei, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017, 38(9): 2496-2506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm
    [6]
    HENG S, LI X Z, LIU X, et al. Experimental study on the mechanical properties of bedding planes in shale[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103161. doi: 10.1016/j.jngse.2020.103161
    [7]
    YANG S Q, YIN P F, RANJITH P G. Experimental study on mechanical behavior and brittleness characteristics of longmaxi formation shale in Changning, Sichuan basin, China[J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2461-2483. doi: 10.1007/s00603-020-02057-8
    [8]
    REN L, XIE H P, SUN X, et al. Characterization of anisotropic fracture properties of Silurian Longmaxi shale[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 665-678. doi: 10.1007/s00603-020-02288-9
    [9]
    ZHAI H Y, CHANG X, ZHU W, et al. Study on anisotropy of Longmaxi shale using hydraulic fracturing experiment[J]. Science China Earth Sciences, 2021, 64(2): 260-277. doi: 10.1007/s11430-020-9691-2
    [10]
    衡帅, 杨春和, 曾义金, 等. 基于直剪试验的页岩强度各向异性研究[J]. 岩石力学与工程学报, 2014, 33(5): 874-883. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405002.htm

    HENG Shuai, YANG Chun-he, ZENG Yi-jin, et al. Anisotropy of shear strength of shale based on direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 874-883. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201405002.htm
    [11]
    侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015, 37(6): 1041-1046. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm

    HOU Bing, CHEN Mian, ZHANG Bao-wei, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1041-1046. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506011.htm
    [12]
    何柏, 谢凌志, 李凤霞, 等. 龙马溪页岩各向异性变形破坏特征及其机理研究[J]. 中国科学:物理学 力学 天文学, 2017, 47(11): 107-118. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm

    HE Bo, XIE Ling-zhi, LI Feng-xia, et al. Anisotropic mechanism and characteristics of deformation and failure of Longmaxi shale[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2017, 47(11): 107-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201711012.htm
    [13]
    张萍, 杨春和, 汪虎, 等.页岩单轴压缩应力-应变特征及能量各向异性[J]. 岩土力学, 2018, 39(6): 2106-2114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806024.htm

    ZHANG Ping, YANG Chun-he, WANG Hu, et al. Stress-strain characteristics and anisotropy energy of shale under uniaxial compression[J]. Rock and Soil Mechanics, 2018, 39(6): 2106-2114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806024.htm
    [14]
    MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643-659.
    [15]
    EBERHARDT E, STEAD D, STIMPSON B, et al. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal, 1998, 35(2): 222-233.
    [16]
    ZHANG X P, LV G G, LIU Q S, et al. Identifying accurate crack initiation and propagation thresholds in siliceous siltstone and limestone[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 973-980.
    [17]
    NICKSIAR M, MARTIN C D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks[J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 607-617.
  • Related Articles

    [1]AI Zhi-yong, HU Ya-dong, ZENG Wen-ze. Axisymmetric consolidation of multi-layered foundation with anisotropic permeability and compressible fluid due to well point sink[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 501-505.
    [2]AI Zhi-yong, ZENG Wen-ze. Axisymmetric Biot's consolidation of multi-layered soils with anisotropic permeability[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 242.
    [3]AI Zhiyong, WU Chao. Analysis of pumping in saturated multi-layered soil by using displacement function method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 681-685.
    [4]LI Jie, ZHANG Xuemin, DUN Zhilin, GAO Xuebing. Displacement function method of space problem for transversely isotropic foundation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 137-142.
    [5]ZHU Xiangrong, DU Qinwen, WANG Wenjun. Solutions for axisymmetric problems of non-homogeneous subgrade on rock[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 383-387.
    [6]LI Peihao, ZHU Xiangrong. Analytic solution of non-axisymmetric problems in transversely isotropic elastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 331-334.
    [7]CHEN Shengli, ZHANG Jianmin. An analysis of axisymmetric consolidation for transversely isotropic saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 26-30.
    [8]Hu Yayuan, Wang Lizhong, Chen Yunmin, Wu Shiming. The theoretical solution of two dimensional biot’s consolidation of layered soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 20-24.
    [9]Kong Lingwei, Yuan Jianxin. Study on surface contact stress and settlement properties during dynamic consolidation[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 86-92.
    [10]Jin Bo, Li Zhibiao, Gu Yaozhang. Settlement Analysis of Single Pile in Layered Soil[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(5): 37-44.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return