• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Yong-zhi, Daniel W Wilson, Mohammad Khosravi, YUAN Xiao-ming, C Guney Olgum. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. DOI: 10.11779/CJGE201602010
Citation: WANG Yong-zhi, Daniel W Wilson, Mohammad Khosravi, YUAN Xiao-ming, C Guney Olgum. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271-277. DOI: 10.11779/CJGE201602010

Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests

More Information
  • Received Date: September 07, 2014
  • Published Date: February 24, 2016
  • Evaluation of shear stress-strain characteristics in soils is paramount to the fundamental understanding of soil behavior in dynamic centrifuge tests. Three inverse analysis techniques for evaluating cyclic shear stress-strain response using data from accelerometer arrays are introduced and key factors that require consideration in the applied condition are discussed. Using a series of dynamic centrifuge tests on soft soil sites with stiff ground reinforcement, the data process for back-calculated displacements from acceleration records is presented. The back calculated displacements are compared to the recorded displacements in several cases with excellent agreements. The three inverse analysis techniques are used to estimate the dynamic shear stress-strain responses in the free field and with in the reinforced ground in two centrifuge tests with different shaking motions of varying magnitudes. The results demonstrate that as long as accelerometer spacing and sampling frequency are sufficient to the active mechanics, the calculated shear stress-strain responses from three inverse techniques are consistent and therefore likely accurately reflect the basic characteristics of interest. In these tests it is observed that shear stiffness decreased at shallower depths, consistent with the expected effects of confining pressure on shear stiffness. It was also observed that the amplitudes of shear strain in the free field are considerably larger, and stronger nonlinear features were observed in the stress-strain loops as compared to the motions with in the reinforced soil. With comparisons among the three inverse analysis techniques, the evaluation from cubic spline approach was more sensitive and the linear and weighted residual techniques produced more reasonably consistent results.
  • [1]
    孙 锐, 袁晓铭, 刘晓健. 动剪切模量比与剪切波速对地震动影响及等量关系研究[J]. 岩土工程学报, 2009, 31(8): 1267-1274. (SUN Rui, YUAN Xiao-ming, LIU Xiao-jian. Effects of dynamic shear modulus ratio and velocity on surface ground motion and their equivalent relations[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1267-1274. (in Chinese))
    [2]
    刘晶波, 赵冬冬, 张小波, 等. 地基自由场离心机振动台模型试验研究[J]. 岩土工程学报, 2013, 35(11): 980-987. (LIU Jing-bo, ZHAO Dong-dong, ZHANG Xiao-bo, et al. Dynamic centrifuge model tests on an unconfined soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 980-987. (in Chinese))
    [3]
    徐光明, 吴宏伟. 大圆筒岸壁码头的量纲分析和离心模拟[J]. 岩土工程学报, 2007, 29(10): 1544-1552. (XU Guang-ming, NG C W W. Dimensional analysis and centrifuge modeling of quay wall of large-diameter bottomless cylinders[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1544-1552. (in Chinese))
    [4]
    BRENNAN A J, THUSYANTHAN N I, MADABHUSHI S P G. Evaluation of shear modulus and damping in dynamic centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1488-1497.
    [5]
    KAMAI R, BOULANGER R. Characterizing localization processes during liquefaction using inverse analysis of instrumentation arrays[M]// Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. 2009: 219-238.
    [6]
    ZEGHAL M, ELGAMAL A W, TANG H T, et al. Lotungdownhole array. II: Evaluation of soil nonlinear properties[J]. Journal of Geotechnical Engineering, 1995, 121(4): 363-378.
    [7]
    DAVIS R O, BERRILL J B. Rational approximation of stress and strain based on downhole acceleration measurements[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22: 603-619.
    [8]
    WILSON D W. Soil-pile-superstructure interaction in liquefying sand and soft clay[D]. California: University of California, 1998.
    [9]
    BRANDENBERG S J, WILSON D W, RASHID M M. Weighted residual numerical differentiation algorithm applied to experimental bending moment data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 854-863.
    [10]
    王永志. 大型动力离心机设计理论与关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013. (WANG Yong-zhi. Study on design theory and key technology of large dynamic centrifuge[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese))
    [11]
    KHOSRAVI M, TAMURA S, WILSON D W, et al. Reduction of seismic shaking intensity on soft soil sites using stiff ground reinforcement—Report 2 & 3: Big centrifuge test data MKH01-MKH02[R]. 2014.
  • Related Articles

    [1]Effect of initial static shear stress and cyclic loading direction on the liquefaction behavior of saturated dense sand[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240591
    [2]XIAO Xing, JI Dongwei, HANG Tianzhu, WU Qi, CHEN Guoxing. Cyclic threshold shear strains for pore water pressure generation and stiffness degradation in marine clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005
    [3]XU Cheng-shun, LI Yan-mei, PAN Xia, GENG Lin. Experimental study on effect of initial static pore water pressure on static and dynamic shear properties of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1050-1057. DOI: 10.11779/CJGE201906008
    [4]HUANG Jue-hao, CHEN Jian, KE Wen-hui, ZHONG Yu, QIU Yue-feng. Coupling effects of bidirectional cyclic loading and loading frequency on pore water pressure of saturated soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 71-74. DOI: 10.11779/CJGE2017S2018
    [5]HU Zhong-hua, WANG Rui, ZHUANG Hai-yang, CHEN Guo-xing. Apparent kinetic viscosity of saturated Nanjing sand due to liquefaction-induced large deformation in torsional shear tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 149-154. DOI: 10.11779/CJGE2016S2024
    [6]ZHUANG Hai-yang, HU Zhong-hua, WANG Rui, CHEN Guo-xing. Cyclic torsional shear loading tests on the extremely large post-liquefaction flow deformation of saturated Nanjing sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2164-2174. DOI: 10.11779/CJGE201612004
    [7]WANG Bing-hui, CHEN Guo-xing. Pore water pressure increment model for saturated Nanjing fine sand subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 188.
    [8]Characteristics of pore water pressure and strength of undisturbed saturated marine clay under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1).
    [9]SHEN Yang, ZHOU Jian, ZHANG Jinliang, GONG Xiaonan. Research on strength and pore pressure of intact clay considering variation of principal stress direction[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 843-847.
    [10]ZHANG Ru, HE Changrong, FEI Wenping, GAO Mingzhong. Effect of consolidation stress ratio on dynamic strength and dynamic pore water pressure of soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 101-105.
  • Cited by

    Periodical cited type(24)

    1. 韩博文,蔡国庆,苏彦林,单冶鹏,李舰. 间歇荷载–湿化耦合作用下有砟轨道路基翻浆冒泥机制及动力特性试验研究. 岩石力学与工程学报. 2025(01): 69-80 .
    2. 王家全,和玉,林志南,唐毅. 考虑温度效应下海砂动力特性试验研究. 土木工程学报. 2025(02): 118-128 .
    3. 马少坤,田发派,黄海均,张加兵,段智博,龚健. 地铁循环荷载下黏土污染圆砾的大型动三轴试验及动力特性研究. 振动与冲击. 2024(07): 245-254 .
    4. 韩博文,蔡国庆,落宇杰,张国光,单冶鹏. 多级/多频列车荷载–湿化耦合作用下有砟轨道路基翻浆冒泥颗粒迁移及动力特性研究. 岩石力学与工程学报. 2024(06): 1535-1548 .
    5. 王家全,和玉,祝梦柯,钱弘毅. 相对密实度和固结应力比对北部湾海砂动力特性影响的试验研究. 安全与环境工程. 2024(04): 20-28 .
    6. 张雅琴,杨平,张婷,韩琳亮. 含盐量及冻融条件对冻融氯盐粉质黏土静动强度特性影响研究. 岩土力学. 2024(S1): 157-166 .
    7. 李丽华,康浩然,张鑫,肖衡林,刘一鸣,周鑫隆. 加筋土石混合体动力特性. 吉林大学学报(工学版). 2024(10): 2897-2907 .
    8. 王家全,祝梦柯,林志南,梁宁. 细粒含量对饱和砾性土静动力学特性的影响. 土木工程学报. 2023(05): 112-121 .
    9. 易文妮,刘津丞,余虔,宣明敏,刘希重,叶新宇,张升. 循环荷载作用下非饱和盐化粉土动力特性. 哈尔滨工业大学学报. 2023(06): 125-133 .
    10. 唐咸远,王诗海,马杰灵,罗杰. 广西钦崇高速公路膨胀土动力变形及动强度特性试验研究. 重庆交通大学学报(自然科学版). 2023(05): 61-69 .
    11. 王家全,王晴,祝梦柯,畅振超. 三级循环荷载下细粒含量对砾砂动力特性的影响分析. 自然灾害学报. 2023(04): 239-248 .
    12. 聂如松,肖玲,谭永长,黄茂桐,周徐海,饶有权. 运梁车荷载作用下粗粒土填料的回弹与累积塑性应变特性研究. 铁道科学与工程学报. 2023(08): 2847-2857 .
    13. 李丽华,张东方,肖衡林,王翠英,邓永锋. 加筋稻壳灰改性土动力特性研究. 岩土力学. 2023(12): 3360-3369 .
    14. 王家全,侯森磊,林志南,黄世斌. 半正弦循环交通动载下加筋砾性土动力特性研究. 振动与冲击. 2022(03): 90-98 .
    15. 王天亮,张飞,宋宏芳,卜建清,尹赵爱. 高速铁路路基粗粒土填料动静力力学特性试验研究. 铁道学报. 2022(04): 127-135 .
    16. 王家全,祝梦柯,王晴,梁宁. 多级半正弦动载下加筋砾性土动力特性试验研究. 实验力学. 2022(03): 378-388 .
    17. 毛永强,陈世豪,袁青,王琳,熊齐欢. P_5含量对路基粗粒土动力特性影响规律试验研究. 中外公路. 2021(04): 301-306 .
    18. 马少坤,韦榕宽,邵羽,黄震,段智博. 基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用. 岩土工程学报. 2021(10): 1798-1806+1958 . 本站查看
    19. 王家全,祝梦柯,唐毅,唐滢. 单幅值循环动载下饱和砾砂动力特性试验研究. 地下空间与工程学报. 2021(06): 1821-1828+1874 .
    20. 王家全,畅振超,唐毅,王晴. 循环荷载作用的加筋砾性土三轴试验动力特性分析. 中国科技论文. 2020(02): 137-142 .
    21. 侯森磊,王家全,唐毅,黄钦政. 交通荷载下加筋砾砂动力特性研究. 广西科技大学学报. 2020(02): 47-53 .
    22. 李丽华,秦浪灵,肖衡林,胡智,裴尧尧,童军. 加筋建筑垃圾土大型动三轴试验及加筋机制探讨. 岩石力学与工程学报. 2020(08): 1682-1695 .
    23. 王家全,畅振超,唐毅,唐滢. 循环荷载下加筋砾性土填料的动三轴试验分析. 岩土力学. 2020(09): 2851-2860 .
    24. 祝梦柯,王家全,张文海,侯森磊. 多级循环荷载下饱和砾性土动三轴试验研究. 广西科技大学学报. 2020(04): 11-18 .

    Other cited types(16)

Catalog

    Article views (484) PDF downloads (319) Cited by(40)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return