• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Cheng-shun, LI Yan-mei, PAN Xia, GENG Lin. Experimental study on effect of initial static pore water pressure on static and dynamic shear properties of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1050-1057. DOI: 10.11779/CJGE201906008
Citation: XU Cheng-shun, LI Yan-mei, PAN Xia, GENG Lin. Experimental study on effect of initial static pore water pressure on static and dynamic shear properties of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1050-1057. DOI: 10.11779/CJGE201906008

Experimental study on effect of initial static pore water pressure on static and dynamic shear properties of sand

More Information
  • Received Date: May 01, 2018
  • Published Date: June 24, 2019
  • A series of undrained cyclic torsional shear tests and monotonic torsional shear tests are carried out on Fujian standard sand and Hutuo River fine sand under different initial static pore water pressures by using the hollow cylinder torsional shear apparatus in order to emphatically discuss the effects of the initial static pore water pressure on the development of the excess pore water pressure and undrained shear strength. The experimental results show that the initial static pore water pressure has a significant effect on the development of the excess pore water pressure, which affects the static and dynamic shear characteristics of sand. Specifically, during the undrained cyclic shear process, the greater initial static pore water pressure leads to the faster development of the excess pore water pressure and deformation. During the undrained monotonic shearing process, the greater the initial static pore water pressure, the greater the negative excess pore water pressure during the sand dilatancy, which significantly increases the strength of the sand. Based on the test results, the mechanism of the influences of the initial static pore water pressure on the excess pore water pressure and static and dynamic shear characteristics is preliminarily discussed. According to the results, the influences of the initial static pore water pressure on the anti-liquefaction strength of sand should be fully considered when we investigate the static and dynamic shear characteristics of soil (partially saturated soil) below the groundwater table, especially the liquefaction problem. In laboratory tests, the initial static pore water pressure (back pressure) should be determined according to the depth of underground water level where the sand is located.
  • [1]
    BRAND E W.Back pressure effects on the undrained strength characteristics of softclay[J]. Soils and Foundations, 1975, 15(2): 1-16.
    [2]
    AHNBERG H.Effects of back pressure and strain rate used in triaxial testing of stabilize dorganic soils and clays[J]. Geotechnical Testing Journal, 2004, 27(3): 250-259.
    [3]
    ALLAM M M, SRIDHARAN A.Influence of the back pressure technique on the shear strength of soils[J]. Geotechnical Testing Journal, 1980, 3(1): 35-40.
    [4]
    黄博, 汪清静, 凌道盛, 等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7): 1313-1319.
    (HUANG Bo, WANG Qing-jing, LING Dao-sheng, et al.Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319. (in Chinese))
    [5]
    HYODO M, YONEDA J, YOSHIMOTO N, et al.Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [6]
    MIYAZAKI K, MASUI A, HANEDA H, et al.Variable-compliance-type constitutive model for methane hydrate bearing sediment[C]// Proceedings of the 6th International Conference on Gas Hydrate. Vancouver, 2008.
    [7]
    蒋明镜, 朱方园, 申志福. 试验反压对深海能源土宏观力学特性影响的离散元分析[J]. 岩土工程学报, 2013, 35(2): 219-226.
    (JIANG Ming-jing, ZHU Fang-yuan, SHEN Zhi-fu.Influence of back pressure on macro-mechanical properties of methane hydrate soils by DEM analyses[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 219-226. (in Chinese))
    [8]
    许成顺, 刘晨, 刘海强, 等. 竖向-扭转双向耦合剪切仪功能析及应用[J]. 北京工业大学学报, 2013(2): 233-238.
    (XU Cheng-shun, LIU Chen, LIU Hai-qiang, et al.Function analysis and application of vertical-torsional coupling shear apparatus[J]. Journal of Beijing University of Technology, 2013(2): 233-238. (in Chinese))
    [9]
    李伟华, 郑洁. 饱和度对平面P波入射下自由场地地震反应的影响分析[J]. 岩土工程学报, 2017, 39(3): 427-435.
    (LI Wei-hua, ZHENG Jie.Effects of saturation on free-field responses of site due to plane P-wave incidence[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 427-435. (in Chinese))
    [10]
    许成顺, 耿琳, 杜修力, 等. 反压对土体强度特性的影响试验研究及其影响机理分析[J]. 土木工程学报, 2016, 49(3): 105-111.
    (XU Cheng-shun, GENG Lin, DU Xiu-li, et al.Effect of back pressure on shear strength of sand: experimental studyand mechanism analysis[J]. China Civil Egineering Journal, 2016, 49(3): 105-111. (in Chinese))
    [11]
    王明洋, 钱七虎. 爆炸波作用下准饱和土的动力模型研究[J]. 岩土工程学报, 1995, 17(6): 103-110.
    (WANG ming-yang, QIAN Qi-hu. Study on the dynamic model of partially saturated soil under the action of explosive wave[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 103-110. (in Chinese))
    [12]
    刘建新, 宋华, 赵跃堂, 等. 准饱和砂土中平面压缩波传播[J]. 防灾减灾工程学报, 2004, 24(1): 86-92.
    (LIU Jian-xin, SONG Hua, ZHAO Yue-tang, et al.Propagation of plane compress-wave in quasic-saturated sandy soil[J]. Journal of Disaster Prevention and Mitigation, 2004, 24(1): 86-92. (in Chinese))
    [13]
    王滢, 高广运. 准饱和土中圆柱形衬砌的瞬态动力响应分析[J]. 岩土力学, 2015, 36(12): 3400-3409.
    (WANG Ying, GAO Guang-yun.Analysis of transient dynamic response of cylindrical lined cavity in nearly saturated soil[J]. Rock and Soil Mechanics, 2015, 36(12): 3400-3409. (in Chinese))
    [14]
    陈炜昀, 夏唐代, 黄睿, 等. P1波在非饱和土地基表面的反射特性[J]. 工程力学, 2013, 30(9): 56-62.
    (CHEN Wei-yun, XIA Tang-dai, HUANG Rui, et al.Reflection characteristics of P1 waves at the free boundray of unsaturated soil[J]. Engineering Mechanics, 2013, 30(9): 56-62. (in Chinese))
    [15]
    SMEULDERS D M J. On wave propagation in saturated and partially saturated porous media[J]. Thesis Technische Univ, 1992.
    [16]
    周新民. 准饱和土波动特性及动力响应研究[D]. 杭州: 浙江大学, 2006.
    (ZHOU Xin-min.Research on wave Propagation characteristics and dynamic response in partially saturated soil[D]. Hangzhou: Zhejiang University, 2006. (in Chinese))
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
    [3]XIE Qiang, CHEN Yucheng, FU Xiang, TIAN Dalang, BAN Yuxin, XU Dongdong. Fluid-solid coupling model for discontinuous deformation analysis of unsaturated transient seepage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(2): 299-306. DOI: 10.11779/CJGE20221026
    [4]Theoretical equation to predict permeability coefficient for unsaturated sandy soils and its application in the quality analysis of pavement drainage base layer[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20221049
    [5]YU Hai-tao, WANG Zhi-kun, LIU Zhong-xian. Influence mechanism of permeability coefficient in homogeneously saturated strata on responses of deep tunnels under incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 201-211. DOI: 10.11779/CJGE202202001
    [6]SHAO Long-tan, WEN Tian-de, GUO Xiao-xia. Direct measurement method and prediction formula for permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 806-812. DOI: 10.11779/CJGE201905002
    [7]MA Ya-wei, CHEN Wen-wu, BI Jun, GUO Gui-hong, JIAO Gui-de. Influence of dry density on coefficient of permeability of unsaturated loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 165-170. DOI: 10.11779/CJGE2018S1027
    [8]CHEN Wen-wu, LIU Wei, WANG Juan, SUN Guan-ping, WU Wei-jiang, HOU Xiao-qiang. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 22-27. DOI: 10.11779/CJGE2018S1004
    [9]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [10]Gao Ji, Lei Guangyao, Zhang Suochun. Numerical Analysis on Seepage through the Saturated and Unsaturated Soils of Levees or Dams[J]. Chinese Journal of Geotechnical Engineering, 1988, 10(6): 28-37.
  • Cited by

    Periodical cited type(29)

    1. 王学峰,李翱翔,史国良,岳春强,张鹏. 大直径超长灌注桩承载特性研究. 山西建筑. 2025(04): 76-81 .
    2. 张高良. 复杂地质环境下桥梁钻孔灌注桩施工关键技术研究. 建筑技术. 2025(01): 61-64 .
    3. 田圆圆. 桥梁后压浆灌注桩承载特性试验研究. 运输经理世界. 2025(01): 75-77 .
    4. 韩重庆,戴璐,黄远,陈乾. 南京市中心医院综合楼原址新建项目单侧大悬挑超限高层结构设计. 建筑结构. 2024(16): 107-113+68 .
    5. 郭能荣. 后压浆桩基承载特性试验研究与分析. 交通世界. 2024(22): 150-153 .
    6. 朱文波,戴国亮,邓会元,竺明星,龚维明. 后顶扩臂压浆桩竖向承载机理及其桩盘力学性能研究. 土木工程学报. 2024(10): 82-94 .
    7. 毛龙,朱文波,杨嘉毅,李勇海,邓会元,程丹莲. 移动射流加固吸力式沉箱基础承载特性试验研究. 岩土工程学报. 2024(S2): 226-230+241 . 本站查看
    8. 夏建中,刘天豪. 不同土体条件下超灌量对桩体位移的影响分析. 浙江科技学院学报. 2023(01): 55-61 .
    9. 吴建军,龚洪兵,胡伟,陈东旭. 桥梁工程后压浆灌注桩承载特性试验研究. 交通世界. 2023(Z2): 226-228+231 .
    10. 吴征,祁熙鹏,党涛,苗苗,陈强. 黄土地层桥梁桩基后压浆技术研究进展. 市政技术. 2023(06): 91-99+106 .
    11. 臧诗齐 ,戴国亮 ,钱晓楠 . 不同注浆材料作用下后压浆桩桩-土界面力学特性分析. 东南大学学报(自然科学版). 2023(03): 496-503 .
    12. 詹伟达,欧红亮,王幸,娄学谦,刘日炜. 桩端及桩侧后注浆对超长灌注桩承载特性的影响. 公路交通科技. 2023(09): 141-150 .
    13. 史昊. 银川沈阳西路快速化改造总体设计研究. 中国水运. 2022(02): 144-146 .
    14. 翟聪,罗志聪,柳磊,王同卫,钱晓楠. 组合后压浆对灌注桩承载力的增强作用研究. 中国水运(下半月). 2022(01): 139-141 .
    15. 晁鹏飞. 超大吨位灌注桩承载力试验及数值模型研究. 城市建筑. 2022(16): 159-163 .
    16. 王贵森,洪宝宁,孙东宁,邵志伟. 联合后注浆对群桩基础工程特性的影响. 公路. 2022(09): 203-211 .
    17. 王卿,李瑜,余奇异,胡涛. 洞庭湖地区桥梁组合压浆灌注桩竖向承载性能试验研究. 建筑结构. 2022(S2): 2497-2501 .
    18. 陈祉阳,龚维明,靳朋刘,朱建民,陈新奎. 基于分布式后压浆的灌注桩承载力试验研究. 地下空间与工程学报. 2022(S2): 689-695 .
    19. 徐艺飞,万志辉,戴国亮,龚维明,高鲁超. 桩端后压浆灌注桩长期承载性能试验研究. 建筑结构学报. 2021(04): 139-146 .
    20. 邸洪江,余奇异,钱晓楠,胡涛. 高速公路桥梁大直径组合后压浆灌注桩自平衡试验研究. 中国水运(下半月). 2021(06): 131-133 .
    21. 秦鹏飞,王为林,袁媛. 岩土工程注浆技术与其应用研究. 地质与勘探. 2021(03): 631-639 .
    22. 叶新宇,彭锐,马新岩,张升,王善勇. 压密效应对新型压密注浆土钉的强化研究. 岩土工程学报. 2021(09): 1649-1656+1738 . 本站查看
    23. 薛振年,冯泓鸣,任晨宁,周志军. 黄土地区桥梁灌注桩桩侧-桩端联合压浆模型试验. 长安大学学报(自然科学版). 2021(06): 19-28 .
    24. 王灿,刘青,党智. 基于挠度的连续梁桥预应力损失分析. 中国水运. 2021(12): 154-156 .
    25. 杨纪,李孟然,黄毅,崔振华. 游荡型河道引桥桩基组合注浆工艺关键技术. 人民黄河. 2020(01): 117-120 .
    26. 万志辉,戴国亮,龚维明,竺明星,高鲁超. 不同成桩工艺对后压浆灌注桩承载特性影响的试验研究. 东南大学学报(自然科学版). 2020(02): 231-236 .
    27. 万志辉,戴国亮,高鲁超,龚维明. 大直径后压浆灌注桩承载力和沉降的实用计算方法研究. 岩土力学. 2020(08): 2746-2755 .
    28. 王丽锋,周长庚. 路面基床病害治理中高性能压浆材料的试验研究. 路基工程. 2019(03): 194-198+204 .
    29. 刘彦峰,胡晓明,马远刚,刘少成. 后注浆技术在粉细砂地层灌注桩中的应用. 桥梁建设. 2019(S1): 127-132 .

    Other cited types(16)

Catalog

    Article views (245) PDF downloads (203) Cited by(45)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return