• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011
Citation: WANG Ti-qiang, WANG Yong-zhi, CHEN Su, DUAN Xue-feng, YUAN Xiao-ming. Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 115-124. DOI: 10.11779/CJGE202201011

Influences of integral displacement methods on inverse analysis of accelerograph arrays for cyclic shear stress-strain response

More Information
  • Received Date: November 18, 2020
  • Available Online: September 22, 2022
  • The inverse analysis of accelerograph arrays for cyclic shear stress-strain response is widely used in in-situ monitoring and physical model tests, but the influences of the key factors such as integral methods and distribution functions still lack knowledge. Four representative one-dimensional shear beam distribution functions are selected, and a set of dynamic centrifugal model tests are used to clarify the influences of the integral methods and distribution functions on the inverse analysis of shear stresses and shear strains, and the features of the acquired hysteresis loops and modulus damping ratios are further analyzed. The results show: (1) The integral methods exhibit a visible impact on the inversion of the shear stresses and shear strains, and using the acceleration curves processed by the integral methods to obtain the shear stresses is an important condition for effectively ensuring the smoothness and closure of the hysteresis loops. Compared with the ARI method, the USGS method has a non-negligible influence on the phase and amplitude of the original acceleration curves. (2) The shear stresses and shear strains obtained by the three shear beam distribution functions of linear, cubic spline and weighted residuals are very consistent, and the influences of the distribution functions can be ignored. However, the results obtained by the cosine method distribution function are relatively discrete, which is not suitable for selection. (3) The dependence of the shear modulus on the integral methods is slight, but the damping ratios are evidently affected. The development trend of the damping ratios obtained by the ARI method conforms to the general understanding, while the USGS method is contrary to it. The research methods and conclusions may provide important guidance and method support for effectively and reliably obtaining the cyclic shear stress-strain response of in-situ site and geophysical tests and verifying the constitutive relationship models.
  • [1]
    黄文熙. 土的弹塑性应力–应变模型理论[J]. 岩土力学, 1979, 1(1): 1–20. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm

    HUANG Wen-xi. Theory of elastoplastic stress-strain model for soil[J]. Rock and Soil Mechanics, 1979, 1(1): 1–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX197901001.htm
    [2]
    卢肇钧. 土的变形破坏机理和土力学计算理论问题[J]. 岩土工程学报, 1989, 11(6): 65–74. doi: 10.3321/j.issn:1000-4548.1989.06.006

    LU Zhao-jun. The failure mechanism of soils and its theoretical computations[J]. Chinese Journal of Geotechnical Engineering, 1989, 11(6): 65–74. (in Chinese) doi: 10.3321/j.issn:1000-4548.1989.06.006
    [3]
    沈珠江. 土体结构性的数学模型──21世纪土力学的核心问题[J]. 岩土工程学报, 1996, 18(1): 95–97. doi: 10.3321/j.issn:1000-4548.1996.01.015

    SHEN Zhu-jiang. Mathematical model of soil structure─the core issue of soil mechanics in the 21st century[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 95–97. (in Chinese) doi: 10.3321/j.issn:1000-4548.1996.01.015
    [4]
    ZEGHAL M, ELGAMAL A W, TANG H T, et al. Lotung downhole array. II: evaluation of soil nonlinear properties[J]. Journal of Geotechnical Engineering, 1995, 121(4): 363–378. doi: 10.1061/(ASCE)0733-9410(1995)121:4(363)
    [5]
    ELGAMAL A W, ZEGHAL M, PARRA E. Liquefaction of reclaimed island in Kobe, Japan[J]. Journal of Geotechnical Engineering, 1996, 122(1): 39–49. doi: 10.1061/(ASCE)0733-9410(1996)122:1(39)
    [6]
    DAVIS R O, BERRILL J B. Rational approximation of stress and strain based on downhole acceleration measurements[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(8): 603–619. doi: 10.1002/(SICI)1096-9853(199808)22:8<603::AID-NAG936>3.0.CO;2-7
    [7]
    陈国兴, 王炳辉, 孙田. 饱和南京细砂动剪切模量特性的大型振动台试验研究[J]. 岩土工程学报, 2012, 34(4): 582–590. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204004.htm

    CHEN Guo-xing, WANG Bing-hui, SUN Tian. Dynamic shear modulus of saturated Nanjing fine sand in large scale shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 582–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201204004.htm
    [8]
    杨耀辉, 陈育民, 刘汉龙, 等. 排水刚性桩单桩抗液化性能的振动台试验研究[J]. 岩土工程学报, 2018, 40(2): 287–295. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm

    YANG Yao-hui, CHEN Yu-min, LIU Han-long, et al. Shaking table tests on liquefaction resistance performance of single rigid-drainage pile[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 287–295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802010.htm
    [9]
    BRANDENBERG S J, WILSON D W, RASHID M M. Weighted residual numerical differentiation algorithm applied to experimental bending moment data[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 854–863. doi: 10.1061/(ASCE)GT.1943-5606.0000277
    [10]
    KAMAI R, BOULANGER R. Characterizing localization processes during liquefaction using inverse analyses of instrumentation arrays[M]//Meso-Scale Shear Physics in Earthquake and Landslide Mechanics. Boca Raton: CRC Press, 2009: 219–238.
    [11]
    王永志, WILSON D W, KHOSRAVI M, 等. 动力离心模型试验循环剪应力–剪应变反演方法对比[J]. 岩土工程学报, 2016, 38(2): 271–277. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602013.htm

    WANG Yong-zhi, WILSON D W, KHOSRAVI M, et al. Evaluation of cyclic shear stress-strain using inverse analysis techniques in dynamic centrifuge tests[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 271–277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602013.htm
    [12]
    王体强, 王永志, 袁晓铭, 等. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(增刊1): 565–573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1082.htm

    WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, et al. Reliability analysis of acceleration integral displacement method based on shaking table tests[J]. Rock and Soil Mechanics, 2019, 40(S1): 565–573. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1082.htm
    [13]
    王体强, 王永志, 袁晓铭, 等. 自适应鲁棒加速度积分新方法与可靠度分析[J]. 岩石力学与工程学报, 2021, 40(增刊1): 2724–2737. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1015.htm

    WANG Ti-qiang, WANG Yong-zhi, YUAN Xiao-ming, et al. A new type of adaptive robust acceleration integration approach and reliability analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2724–2737 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S1015.htm
    [14]
    CONVERSE A M, BRADY A G. BAP: Basic strong-motion accelerogram processing software; version 1.0[R]. U. S. Geology Survey, 1992, 92–296A.
    [15]
    王永志, MOHAMMAD K, DANIEL W, 等. CDM格栅复合黏土地基地震反应离心试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2394–2405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810019.htm

    WANG Yong-zhi, MOHAMMAD K, DANIEL W, et al. Centrifuge modeling of seismic response of soft clay grounds improved by CDM grids[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2394–2405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810019.htm
    [16]
    KHOSRAVI M, TAMURA S, WILSON D W, et al. Reduction of seismic shaking intensity on soft soil sites using stiff ground reinforcement—Report 2 & 3: Big centrifuge test data MKH01-MKH02[R]. 2014.
    [17]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667–692.
    [18]
    BRENNAN A J, THUSYANTHAN N I, MADABHUSHI S P. Evaluation of shear modulus and damping in dynamic centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1488–1497.
    [19]
    AFACAN K B, BRANDENBERG S J, STEWART J P. Centrifuge modeling studies of site response in soft clay over wide strain range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013003.
  • Related Articles

    [1]Rock landslide early warning in open-pit mine based on rockfall video monitoring[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240026
    [2]CAI Yuebo, XIANG Yan, SHENG Jinbao, MENG Ying. Deep-water detection, monitoring, early warning and treatment of emergencies of major water conservancy projects: a review[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 441-458. DOI: 10.11779/CJGE20221480
    [3]ZHOU Chun-hua, LI Yun-an, YIN Jian-min, WANG Yang, ZHOU Chao, GUO Xi-feng. Multivariate early warning method for rockbursts based on comprehensive microseismic and electromagnetic radiation monitoring[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 457-466. DOI: 10.11779/CJGE202003007
    [4]YANG Guang-yu, JIANG Fu-xing, QU Xiao-cheng, LI Lin, WEI Quan-de, LI Nai-lu. Comprehensive monitoring and early warning technology for rock burst of tunneling face with thick coal seams[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1949-1958. DOI: 10.11779/CJGE201910021
    [5]ZHAO Jiu-bin, LIU Yuan-xue, LIU Na, HU Ming. Association rules of monitoring and early warning by using landslides FRPFP model—Case study of Jiangjin-Fengjie reach in Three Gorges Reservoir area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 492-500. DOI: 10.11779/CJGE201903011
    [6]XU Yang-qing, CHENG Lin. Analysis processing of monitoring data and forecast and early warning system of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk1): 219-224. DOI: 10.11779/CJGE2014S1038
    [7]JIANG Peng-ming, MEI Ling, JI Pei-xiang, ZHOU Ai-zhao. Development and application of monitoring and warning system geological disasters of slope in Zhenjiang Martyrs Cemetery[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 340-345.
    [8]WANG Wei, SHEN Zhenzhong, LI Taofan. Safety early warning evaluation model for dams based on coupled method of genetic algorithm and adapting particle swarm optimization algorithm[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1242-1247.
    [9]MA Fuheng, HE Xinwang, WU Guangyao. Risk early-warning index system for earth and rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1734-1737.
    [10]YU Yuzhen, LIN Hung chou, LI Guangxin. Analysis of finite element method for early warning of landslide[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1264-1267.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return