• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Gao, LI Zhi-yuan, LI Jian-bo. Dynamic soil-structure interaction under complex soil environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1573-1580. DOI: 10.11779/CJGE202109001
Citation: LIN Gao, LI Zhi-yuan, LI Jian-bo. Dynamic soil-structure interaction under complex soil environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1573-1580. DOI: 10.11779/CJGE202109001

Dynamic soil-structure interaction under complex soil environment

More Information
  • Received Date: December 17, 2020
  • Available Online: December 02, 2022
  • The dynamic soil-structure interaction (SSI) analysis is of great significance to the earthquake safety evaluation of infrastructures, such as dams, bridges, nuclear power structures, etc. The state of the art and the current design practice of SSI analysis are briefly reviewed. It is worth to mention that after the 2011 accident of Fukushima Nuclear Power Plant in Japan, the international demand for the earthquake safety of nuclear power structures has been raised. Hence, it is imperative to develop more advanced appropriate computational models for the safety evaluation of the important structures. For this purpose, a novel SSI analysis model under complex soil environment is proposed so that the influences of the inhomogeneities appearing in the near field of the structure including the layering of the half-space, the embedment of the foundation, the layout level of the foundation base, the existence of adjacent structures, the nearly soft geologic inclusions, the irregular interfaces between the layers can be easily and conveniently taken into consideration without additional effort. As a result, the computation can be more accurate and efficient. Numerical examples are provided to validate the effectiveness of the proposed approach.
  • [1]
    KAUSEL E. Early history of soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(9): 822-832. doi: 10.1016/j.soildyn.2009.11.001
    [2]
    GAZETAS G. Analysis of machine foundation vibrations: state of the art[J]. International Journal of Soil Dynamics and Earthquake Engineering, 1983, 2(1): 2-42. doi: 10.1016/0261-7277(83)90025-6
    [3]
    LAMB H. On the Propagation of tremors over the surface of an elastic solid[J]. Philosophical Transactions of the Royal Society of London, Series A, 1904, 203: 1-42. doi: 10.1098/rsta.1904.0013
    [4]
    MINDLIN R D. Force at a point in the interior of a semi- infinite solid[J]. Physics, 1936, 7(5): 195-202. doi: 10.1063/1.1745385
    [5]
    REISSNER E. Stationäre, axialsymmetrische, durch eine schüttelnde Masse erregte Schwingungen eines homogenen elastischen Halbraumes[J]. Ingenieur-Archiv, 1936, 7(6): 381-396. doi: 10.1007/BF02090427
    [6]
    AS U V, YT U W. Lateral and rocking vibration of footings[J]. ASCE, J Soil Mech Found Div, 1971, 97(SM9): 1227-1248.
    [7]
    LUCO J E, WESTMANN R A. Dynamic response of circular footings[J]. Journal of Engineering Mechanics, ASCE, 1971, 97: 1381-1395.
    [8]
    LUCO J E, WESTMANN R A. Dynamic response of a rigid footing bonded to an elastic half space[J]. Journal of Applied Mechanics, 1972, 39(2): 527-534. doi: 10.1115/1.3422711
    [9]
    HADJIAN A H, TSENG W S, et al. The learning from the large scale Lotung soil-structure interaction experiments[C]//Proc. Second International Conference on Recent Advances in Geothechnial Earthquake Engineering and Soil Dynamics, 1991.
    [10]
    井口道雄. 大型模型による原子炉建屋と地盤の動的相互作用試験[C]//日本建築学会大会学術講演梗概集,1984-1987, 东京.

    MICHIO I. Dynamic interaction test between reactor building and ground using a large model[C]//Summary of Academic Lectures at the Architectural Society of Japan Conference, 1984-1987, Tokyo. (in Chinese)
    [11]
    Seismic Analysis of Safety-Related Nuclear Structures: ASCE Standard/SEI 4-16[S]. 2016.
    [12]
    Seismic Analysis of Safety-Related Nuclear Structures: ASCE Standard/SEI 4-98[S]. 1998.
    [13]
    KAUSEL E. Local transmitting boundaries[J]. Journal of Engineering Mechanics, ASCE, 1988, 114(6): 1011-1027. doi: 10.1061/(ASCE)0733-9399(1988)114:6(1011)
    [14]
    WOLF J P. A comparison of time‐domain transmitting boundaries[J]. Earthquake Engineering & Structural Dynamics, 1986, 14(4): 655-673.
    [15]
    DEEKS A J, RANDOLPH M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, 1994, 120(1): 25-42. doi: 10.1061/(ASCE)0733-9399(1994)120:1(25)
    [16]
    刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域黏弹性人工边界[J]. 工程力学, 2005, 22(6): 46-51. doi: 10.3969/j.issn.1000-4750.2005.06.008

    LIU Jing-bo, WANG Zhen-ning, DU Xiu-li, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6): 46-51. (in Chinese) doi: 10.3969/j.issn.1000-4750.2005.06.008
    [17]
    廖振鹏, 黄孔亮, 杨柏坡, 等. 暂态波透射边界[J]. 中国科学(A辑), 1984(6): 556-564. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198406007.htm

    LIAO Zhen-peng, HUANG Kong-liang, YANG Bai-po, et al. Transient wave transmission boundary[J]. Science China (A), 1984(6): 556-564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK198406007.htm
    [18]
    WOLF J P. Dynamic Soil-Structure Interaction[M]. Englewood Cliffs: Prentice Hall, 1985.
    [19]
    LIN G, HAN Z J, LU S, et al. Wave motion equation and the dynamic Green’s function for a transverse isotropic multilayered half-space[J]. Soils and Foundations, 2017, 57(3): 397-411. doi: 10.1016/j.sandf.2017.05.007
    [20]
    李志远. 复杂层状地基中的波动传播和地下结构地震响应的研究[D]. 大连: 大连理工大学, 2019.

    LI Zhi-yuan. The Research of Wave Propagation and Seismic Response of Underground Structure in Complex Layered Soil[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [21]
    RADMANOVIC B, KATZ C. A high performance scaled boundary finite element method[C]//IOP Conference Series: Materials Science and Engineering, 2010, IOP Publishing.
    [22]
    LIN G, LU S, LIU J. Transmitting boundary for transient analysis of wave propagation in layered media formulated based on acceleration unit-impulse response[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 494-509. doi: 10.1016/j.soildyn.2016.09.021
    [23]
    AI Z Y, ZHANG Y F. Plane strain dynamic response of a transversely isotropic multilayered half-plane[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 211-219. doi: 10.1016/j.soildyn.2015.04.010
    [24]
    DE BARROS F C P, ENRIQUE LUCO J. Amplification of obliquely incident waves by a cylindrical valley embedded in a layered half-space[J]. Soil Dynamics and Earthquake Engineering, 1995, 14(3): 163-175. doi: 10.1016/0267-7261(94)00047-K
  • Cited by

    Periodical cited type(10)

    1. Wan Feng,Qin Shengwu,Liu Dewen,Zhao Tiange,Zheng Yanping,Shan Hang,Li Zhiang,Peng Fusong,Xu Jingran,Lei Min. Seismic response of a mid-story isolated structure considering SSI in mountainous areas under long-period earthquakes. Earthquake Engineering and Engineering Vibration. 2024(01): 151-161 .
    2. 胡哲文,李建波,李志远. 考虑提离-滑移效应的核电结构-界面-地基相互作用模型研究. 振动与冲击. 2023(06): 126-133+201 .
    3. 朱升冬,陈国兴,陈炜昀,高文生,李文彪. 土的次非线性对桩基核岛结构三维地震反应的影响. 岩土力学. 2023(05): 1501-1511 .
    4. 胡哲文,李建波,李志远,林皋. 阶梯地形下坝-库水-地基非线性相互作用的动力模型与多因素耦合模拟. 水利学报. 2023(07): 843-856 .
    5. 尹训强,孙华跃. 复杂非均质场地条件下核电厂联合泵房抗震安全性评价分析. 地震工程与工程振动. 2023(04): 226-234 .
    6. 李培振,肖嘉取,杨金平,丁永刚. 考虑SSI效应的框架结构体系动力响应分析. 华南理工大学学报(自然科学版). 2023(09): 139-148 .
    7. 李庆华,冯子超,陈莘莘,孔祥禄. 稳态非线性热传导问题的比例边界有限元法. 华东交通大学学报. 2023(06): 110-114 .
    8. 仇文俊. 复杂地质条件下的建筑物地基处理方案优化. 建筑与预算. 2022(09): 62-64 .
    9. 彭刚,刘云龙,陈灯红,候春平,林天成,刘云辉. 基于完美匹配层人工边界的坝-基动力相互作用研究. 岩土力学. 2022(11): 3144-3152+3173 .
    10. Yue Li,Xunqiang Yin. Construction parameters of graded sand-gravel foundation on seismic response law of nuclear safety grade underground corridor. Earthquake Research Advances. 2022(04): 39-45 .

    Other cited types(5)

Catalog

    Article views (402) PDF downloads (367) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return