• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU Liang, HE Bing, XIAO Liang, WANG Zong-jian, MA Shu-wen, LIN Hao-xin. Experimental study on CPT penetration in layered soil based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2215-2224. DOI: 10.11779/CJGE202212008
Citation: LU Liang, HE Bing, XIAO Liang, WANG Zong-jian, MA Shu-wen, LIN Hao-xin. Experimental study on CPT penetration in layered soil based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2215-2224. DOI: 10.11779/CJGE202212008

Experimental study on CPT penetration in layered soil based on transparent soil

More Information
  • Received Date: September 21, 2021
  • Available Online: December 13, 2022
  • The penetration resistance of cone penetration test (CPT) in layered soil is significantly affected by the soil interface, but there is still a lack of systematic explanation for the phenomenon of "leading and lagging" when the probe crosses the soil interface. The division of soil layers through the penetration resistance still depends on engineering experience. A series of transparent soil model tests are carried out to simulate the penetration process of the probe in layered soil. The penetration mechanism of CPT in the layered soil is studied by observing the resistance curve of the probe and the deformation of soil near the probe. Combining with the cavity expansion theory and the Mohr Coulomb criterion, the method for calculating the influence depth of the cone resistance is proposed. Based on the test data and theoretical calculation, it is found that the influence range of the plastic zone in the two-layered soil with the upper sand and the lower clay is consistent with the "leading" depth of the penetration resistance curve. PFC is used to analyze the influence factors of the interface effct reflected by the CPT penetration resistance in layered soil. The results show that the soil deformation during CPT penetration is related to the soil strength, the initial in-situ stress and the position of soil interface. The strength difference between two adjacent layers of soil has a significant influence on the "leading and lagging" depth. Based on the research results, the soil layer is divided according to the plastic zone of soil and the leading depth of soil. Compared with the current complex methods of soil layer division, the proposed method can improve the efficiency and accuracy of soil layer division.
  • [1]
    蒋明镜, 吕雷, 李立青, 等. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783–1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010003.htm

    JIANG Ming-jing, LÜ Lei, LI Li-qing, et al. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783–1789. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010003.htm
    [2]
    夏增明, 蒋崇伦, 孙渝文. 静力触探模型试验及机理分析[J]. 长沙铁道学院学报, 1990(3): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199003000.htm

    XIA Zeng-ming, JIANG Chong-lun, SUN Yu-wen. The mode experiment and analysis of the mechanism in static penetration test[J]. Journal of Changsha Railway University, 1990(3): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199003000.htm
    [3]
    陈维家, 汪火旺. 静力触探中土层界面效应试验研究[J]. 水文地质工程地质, 2003, 30(2): 25–27. doi: 10.3969/j.issn.1000-3665.2003.02.006

    CHEN Wei-jia, WANG Huo-wang. Research of soil-layer interface effect in cone penetrafion test[J]. Hydrogeology and Engineering Geology, 2003, 30(2): 25–27. (in Chinese) doi: 10.3969/j.issn.1000-3665.2003.02.006
    [4]
    YU H S, SCHNAID F, COLLINS I F. Analysis of cone pressuremeter tests in sands[J]. Journal of Geotechnical Engineering, 1996, 122(8): 623–632. doi: 10.1061/(ASCE)0733-9410(1996)122:8(623)
    [5]
    WALKER J, YU H S. Analysis of the cone penetration test in layered clay[J]. Géotechnique, 2010, 60(12): 939–948. doi: 10.1680/geot.7.00153
    [6]
    MO P Q, MARSHALL A M, YU H S. Layered effects on soil displacement around a penetrometer[J]. Soils and Foundations, 2017, 57(4): 669–678. doi: 10.1016/j.sandf.2017.04.007
    [7]
    MO P Q, MARSHALL A M, YU H S. Interpretation of cone penetration test data in layered soils using cavity expansion analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 1–12.
    [8]
    蔡国军, 刘松玉, 童立元, 等. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 2009, 31(3): 416–424. doi: 10.3321/j.issn:1000-4548.2009.03.018

    CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416–424. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.018
    [9]
    CAI G J, LIU S Y, PUPPALA A J. Comparison of CPT charts for soil classification using PCPT data: example from clay deposits in Jiangsu Province, China[J]. Engineering Geology, 2011, 121(1/2): 89–96.
    [10]
    CAI G J, LIU S Y, TONG L Y, et al. Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles[J]. Engineering Geology, 2009, 104(3/4): 211–222.
    [11]
    孔纲强, 孙学谨, 肖扬, 等. 透明土与标准砂压缩变形特性对比试验研究[J]. 岩土工程学报, 2016, 38(10): 1895–1903. doi: 10.11779/CJGE201610020

    KONG Gang-qiang, SUN Xue-jin, XIAO Yang, et al. Comparative experiments on compressive deformation properties of transparent soil and standard sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1895–1903. (in Chinese) doi: 10.11779/CJGE201610020
    [12]
    吴跃东, 陈明建, 周云峰, 等. 新型透明黏土的配制及其基本特性研究[J]. 岩土工程学报, 2020, 42(增刊1): 141–145. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1028.htm

    WU Yue-dong, CHEN Ming-jian, ZHOU Yun-feng, et al. Distribution and basic characteristics of new transparent clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 141–145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1028.htm
    [13]
    NI Q, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry[J]. Géotechnique, 2010, 60(2): 121–132. doi: 10.1680/geot.8.P.052
    [14]
    马少坤, 韦榕宽, 邵羽, 等. 基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用[J]. 岩土工程学报, 2021, 43(10): 1798–1806, 1958. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110006.htm

    MA Shao-kun, WEI Rong-kuan, SHAO Yu, et al. 3D visual model tests on stability of tunnel excavation surface based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1798–1806, 1958. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110006.htm
    [15]
    周东, 刘汉龙, 仉文岗, 等. 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686–2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm

    ZHOU Dong, LIU Han-long, ZHANG Wen-gang, et al. Transparent soil model test on the displacement field of soil around single passive pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2686–2694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm
    [16]
    EZZEIN F M, BATHURST R J. A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil[J]. Geotextiles and Geomembranes, 2014, 42(3): 246–255. doi: 10.1016/j.geotexmem.2014.04.003
    [17]
    陈建峰, 许强, 郭鹏辉, 等. 基于透明土技术的加筋地基模型试验[J]. 同济大学学报(自然科学版), 2017, 45(3): 330–335. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703005.htm

    CHEN Jian-feng, XU Qiang, GUO Peng-hui, et al. Model tests of reinforced foundation based on transparent soil technique[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 330–335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703005.htm
    [18]
    SUI W H, ZHENG G S. An experimental investigation on slope stability under drawdown conditions using transparent soils[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(3): 977–985. doi: 10.1007/s10064-017-1082-8
    [19]
    王壮, 李驰, 丁选明. 基于透明土技术土岩边坡滑移机理的模型试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 185–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2048.htm

    WANG Zhuang, LI Chi, DING Xuan-ming. Model tests on sliding mechanism of soil-rock slopes based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 185–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2048.htm
    [20]
    WANG Z, LI C, DING X M. Application of transparent soil model tests to study the soil-rock interfacial sliding mechanism[J]. Journal of Mountain Science, 2019, 16(4): 935–943.
    [21]
    LUNNE T, POWELL J J M, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. Florida: CRC Press, 2002.
    [22]
    CHEN Z Q, HUANG M S, SHI Z H. Application of a state-dependent sand model in simulating the cone penetration tests[J]. Computers and Geotechnics, 2020, 127: 103780.
    [23]
    TSCHUSCHKE W, KUMOR M K, WALCZAK M, et al. Cone penetration test in assessment of soil stiffness[J]. Geological Quarterly, 2015: 419–425.
    [24]
    TEHRANI F S, ARSHAD M I, PREZZI M, et al. Physical modeling of cone penetration in layered sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 1–10.
    [25]
    CHANG M F. Undrained cavity expansion in modified Cam clay II: application to the interpretation of the piezocone test[J]. Géotechnique, 2001, 52(4): 307–311.
    [26]
    CUDMANI R, OSINOV V A. The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests[J]. Canadian Geotechnical Journal, 2001, 38(3): 622–638.
    [27]
    李波. 孔扩张理论研究及其在静力触探技术中的应用[D]. 大连: 大连理工大学, 2007.

    LI Bo. Study on Cavity Expansion and its Applications to Cone Penetration Test[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
    [28]
    周瑜, 晏鄂川, 李辉, 等. 基于静力触探曲线的土体量化分层方法[J]. 工程勘察, 2011, 39(3): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201103007.htm

    ZHOU Yu, YAN E-chuan, LI Hui, et al. A quantified soil stratifying method based on cone penetration test curve[J]. Geotechnical Investigation & Surveying, 2011, 39(3): 24–26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201103007.htm
    [29]
    林军, 蔡国军, 刘松玉, 等. 基于孔压静力触探力学分层的土体边界识别方法研究[J]. 岩土力学, 2017, 38(5): 1413–1423. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705025.htm

    LIN Jun, CAI Guo-jun, LIU Song-yu, et al. Identification of soil layer boundaries using mechanical layered method base on piezocone penetration test data[J]. Rock and Soil Mechanics, 2017, 38(5): 1413–1423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705025.htm
    [30]
    曹子君, 郑硕, 李典庆, 等. 基于静力触探的土层自动划分方法与不确定性表征[J]. 岩土工程学报, 2018, 40(2): 336–345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802020.htm

    CAO Zi-jun, ZHENG Shuo, LI Dian-qing, et al. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336–345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802020.htm
    [31]
    DUAN N, CHENG Y. A modified method of generating specimens for a 2D DEM centrifuge model[C]//Geo-Chicago, American Society of Civil Engineers. Chicago, 2016.
    [32]
    周健, 王家全, 曾远, 等. 土坡稳定分析的颗粒流模拟[J]. 岩土力学, 2009, 30(1): 86–90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901021.htm

    ZHOU Jian, WANG Jia-quan, ZENG Yuan, et al. Simulation of slope stability analysis by particle flow code[J]. Rock and Soil Mechanics, 2009, 30(1): 86–90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901021.htm
    [33]
    周博, 汪华斌, 赵文锋, 等. 黏性材料细观与宏观力学参数相关性研究[J]. 岩土力学, 2012, 33(10): 3171–3175, 3177. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210047.htm

    ZHOU Bo, WANG Hua-bin, ZHAO Wen-feng, et al. Analysis of relationship between particle mesoscopic and macroscopic mechanical parameters of cohesive materials[J]. Rock and Soil Mechanics, 2012, 33(10): 3171–3175, 3177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210047.htm
    [34]
    陈建峰, 李辉利, 周健. 黏性土宏细观参数相关性研究[J]. 力学季刊, 2010, 31(2): 304–309. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201002024.htm

    CHEN Jian-feng, LI Hui-li, ZHOU Jian. Study on the relevance of macro-micro parameters for clays[J]. Chinese Quarterly of Mechanics, 2010, 31(2): 304–309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201002024.htm
    [35]
    宁孝梁. 黏性土的细观三轴模拟与微观结构研究[D]. 杭州: 浙江大学, 2017.

    NING Xiao-liang. The Meso-Simulations of Triaxial Tests and Microstructure Study of The Cohesive Soil[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [36]
    雷华阳, 王铁英, 张志鹏, 等. 高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1784–1794. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706015.htm

    LEI Hua-yang, WANG Tie-ying, ZHANG Zhi-peng, et al. Macro-and meso-analysis of newly formed highly viscous dredger fill under vacuum preloading using particle flow theory[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6): 1784–1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706015.htm
    [37]
    GUI M W, BOLTON M D. Geometry and Scale Effects in CPT and Pile Design, in Geotechnical Site Characterization [M]. Rotterdam: Balkema, 1998: 1063–1068.
    [38]
    BUTLANSKA J, ARROYO M, GENS A. Size effects on a virtual calibration chamber[M]// Numerical Methods in Geotechnical Engineering: NUMGE 2010. Boca Raton: CRC Press. 2010.
    [39]
    ARROYO M, BUTLANSKA J, GENS A, et al. Cone penetration tests in a virtual calibration chamber[J]. Géotechnique, 2011, 61(6): 525–531.
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 施静怡,吴能森,刘强. 静压桩在成层地基中挤土效应的可视化研究. 河南城建学院学报. 2024(02): 20-26 .
    2. 胡文强,周航,刘汉龙. XCC桩群桩沉桩挤土效应透明土模型试验研究. 土木与环境工程学报(中英文). 2024(06): 107-115 .
    3. 丁雪涛,潘殿琦,王明威. CPT阻力受土层界面效应影响的数值模拟. 实验室研究与探索. 2023(05): 26-31+36 .
    4. 田波,王昊武,权磊,谢晋德,朱旭伟. 基于CPT试验的多年冻土区路表变形风险评价. 公路交通科技. 2023(09): 1-7+53 .

    Other cited types(3)

Catalog

    Article views (265) PDF downloads (57) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return