Citation: | LU Liang, HE Bing, XIAO Liang, WANG Zong-jian, MA Shu-wen, LIN Hao-xin. Experimental study on CPT penetration in layered soil based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2215-2224. DOI: 10.11779/CJGE202212008 |
[1] |
蒋明镜, 吕雷, 李立青, 等. TJ-M1模拟火壤承载特性的研究[J]. 岩土工程学报, 2020, 42(10): 1783–1789. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010003.htm
JIANG Ming-jing, LÜ Lei, LI Li-qing, et al. Bearing properties of TJ-M1 Mars soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1783–1789. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202010003.htm
|
[2] |
夏增明, 蒋崇伦, 孙渝文. 静力触探模型试验及机理分析[J]. 长沙铁道学院学报, 1990(3): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199003000.htm
XIA Zeng-ming, JIANG Chong-lun, SUN Yu-wen. The mode experiment and analysis of the mechanism in static penetration test[J]. Journal of Changsha Railway University, 1990(3): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD199003000.htm
|
[3] |
陈维家, 汪火旺. 静力触探中土层界面效应试验研究[J]. 水文地质工程地质, 2003, 30(2): 25–27. doi: 10.3969/j.issn.1000-3665.2003.02.006
CHEN Wei-jia, WANG Huo-wang. Research of soil-layer interface effect in cone penetrafion test[J]. Hydrogeology and Engineering Geology, 2003, 30(2): 25–27. (in Chinese) doi: 10.3969/j.issn.1000-3665.2003.02.006
|
[4] |
YU H S, SCHNAID F, COLLINS I F. Analysis of cone pressuremeter tests in sands[J]. Journal of Geotechnical Engineering, 1996, 122(8): 623–632. doi: 10.1061/(ASCE)0733-9410(1996)122:8(623)
|
[5] |
WALKER J, YU H S. Analysis of the cone penetration test in layered clay[J]. Géotechnique, 2010, 60(12): 939–948. doi: 10.1680/geot.7.00153
|
[6] |
MO P Q, MARSHALL A M, YU H S. Layered effects on soil displacement around a penetrometer[J]. Soils and Foundations, 2017, 57(4): 669–678. doi: 10.1016/j.sandf.2017.04.007
|
[7] |
MO P Q, MARSHALL A M, YU H S. Interpretation of cone penetration test data in layered soils using cavity expansion analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(1): 1–12.
|
[8] |
蔡国军, 刘松玉, 童立元, 等. 基于聚类分析理论的CPTU土分类方法研究[J]. 岩土工程学报, 2009, 31(3): 416–424. doi: 10.3321/j.issn:1000-4548.2009.03.018
CAI Guo-jun, LIU Song-yu, TONG Li-yuan, et al. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416–424. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.03.018
|
[9] |
CAI G J, LIU S Y, PUPPALA A J. Comparison of CPT charts for soil classification using PCPT data: example from clay deposits in Jiangsu Province, China[J]. Engineering Geology, 2011, 121(1/2): 89–96.
|
[10] |
CAI G J, LIU S Y, TONG L Y, et al. Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles[J]. Engineering Geology, 2009, 104(3/4): 211–222.
|
[11] |
孔纲强, 孙学谨, 肖扬, 等. 透明土与标准砂压缩变形特性对比试验研究[J]. 岩土工程学报, 2016, 38(10): 1895–1903. doi: 10.11779/CJGE201610020
KONG Gang-qiang, SUN Xue-jin, XIAO Yang, et al. Comparative experiments on compressive deformation properties of transparent soil and standard sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1895–1903. (in Chinese) doi: 10.11779/CJGE201610020
|
[12] |
吴跃东, 陈明建, 周云峰, 等. 新型透明黏土的配制及其基本特性研究[J]. 岩土工程学报, 2020, 42(增刊1): 141–145. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1028.htm
WU Yue-dong, CHEN Ming-jian, ZHOU Yun-feng, et al. Distribution and basic characteristics of new transparent clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 141–145. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1028.htm
|
[13] |
NI Q, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry[J]. Géotechnique, 2010, 60(2): 121–132. doi: 10.1680/geot.8.P.052
|
[14] |
马少坤, 韦榕宽, 邵羽, 等. 基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用[J]. 岩土工程学报, 2021, 43(10): 1798–1806, 1958. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110006.htm
MA Shao-kun, WEI Rong-kuan, SHAO Yu, et al. 3D visual model tests on stability of tunnel excavation surface based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1798–1806, 1958. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202110006.htm
|
[15] |
周东, 刘汉龙, 仉文岗, 等. 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686–2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm
ZHOU Dong, LIU Han-long, ZHANG Wen-gang, et al. Transparent soil model test on the displacement field of soil around single passive pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2686–2694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm
|
[16] |
EZZEIN F M, BATHURST R J. A new approach to evaluate soil-geosynthetic interaction using a novel pullout test apparatus and transparent granular soil[J]. Geotextiles and Geomembranes, 2014, 42(3): 246–255. doi: 10.1016/j.geotexmem.2014.04.003
|
[17] |
陈建峰, 许强, 郭鹏辉, 等. 基于透明土技术的加筋地基模型试验[J]. 同济大学学报(自然科学版), 2017, 45(3): 330–335. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703005.htm
CHEN Jian-feng, XU Qiang, GUO Peng-hui, et al. Model tests of reinforced foundation based on transparent soil technique[J]. Journal of Tongji University (Natural Science), 2017, 45(3): 330–335. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201703005.htm
|
[18] |
SUI W H, ZHENG G S. An experimental investigation on slope stability under drawdown conditions using transparent soils[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(3): 977–985. doi: 10.1007/s10064-017-1082-8
|
[19] |
王壮, 李驰, 丁选明. 基于透明土技术土岩边坡滑移机理的模型试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 185–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2048.htm
WANG Zhuang, LI Chi, DING Xuan-ming. Model tests on sliding mechanism of soil-rock slopes based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 185–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2048.htm
|
[20] |
WANG Z, LI C, DING X M. Application of transparent soil model tests to study the soil-rock interfacial sliding mechanism[J]. Journal of Mountain Science, 2019, 16(4): 935–943.
|
[21] |
LUNNE T, POWELL J J M, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. Florida: CRC Press, 2002.
|
[22] |
CHEN Z Q, HUANG M S, SHI Z H. Application of a state-dependent sand model in simulating the cone penetration tests[J]. Computers and Geotechnics, 2020, 127: 103780.
|
[23] |
TSCHUSCHKE W, KUMOR M K, WALCZAK M, et al. Cone penetration test in assessment of soil stiffness[J]. Geological Quarterly, 2015: 419–425.
|
[24] |
TEHRANI F S, ARSHAD M I, PREZZI M, et al. Physical modeling of cone penetration in layered sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 1–10.
|
[25] |
CHANG M F. Undrained cavity expansion in modified Cam clay II: application to the interpretation of the piezocone test[J]. Géotechnique, 2001, 52(4): 307–311.
|
[26] |
CUDMANI R, OSINOV V A. The cavity expansion problem for the interpretation of cone penetration and pressuremeter tests[J]. Canadian Geotechnical Journal, 2001, 38(3): 622–638.
|
[27] |
李波. 孔扩张理论研究及其在静力触探技术中的应用[D]. 大连: 大连理工大学, 2007.
LI Bo. Study on Cavity Expansion and its Applications to Cone Penetration Test[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
|
[28] |
周瑜, 晏鄂川, 李辉, 等. 基于静力触探曲线的土体量化分层方法[J]. 工程勘察, 2011, 39(3): 24–26. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201103007.htm
ZHOU Yu, YAN E-chuan, LI Hui, et al. A quantified soil stratifying method based on cone penetration test curve[J]. Geotechnical Investigation & Surveying, 2011, 39(3): 24–26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201103007.htm
|
[29] |
林军, 蔡国军, 刘松玉, 等. 基于孔压静力触探力学分层的土体边界识别方法研究[J]. 岩土力学, 2017, 38(5): 1413–1423. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705025.htm
LIN Jun, CAI Guo-jun, LIU Song-yu, et al. Identification of soil layer boundaries using mechanical layered method base on piezocone penetration test data[J]. Rock and Soil Mechanics, 2017, 38(5): 1413–1423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705025.htm
|
[30] |
曹子君, 郑硕, 李典庆, 等. 基于静力触探的土层自动划分方法与不确定性表征[J]. 岩土工程学报, 2018, 40(2): 336–345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802020.htm
CAO Zi-jun, ZHENG Shuo, LI Dian-qing, et al. Probabilistic characterization of underground stratigraphy and its uncertainty based on cone penetration test[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 336–345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201802020.htm
|
[31] |
DUAN N, CHENG Y. A modified method of generating specimens for a 2D DEM centrifuge model[C]//Geo-Chicago, American Society of Civil Engineers. Chicago, 2016.
|
[32] |
周健, 王家全, 曾远, 等. 土坡稳定分析的颗粒流模拟[J]. 岩土力学, 2009, 30(1): 86–90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901021.htm
ZHOU Jian, WANG Jia-quan, ZENG Yuan, et al. Simulation of slope stability analysis by particle flow code[J]. Rock and Soil Mechanics, 2009, 30(1): 86–90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901021.htm
|
[33] |
周博, 汪华斌, 赵文锋, 等. 黏性材料细观与宏观力学参数相关性研究[J]. 岩土力学, 2012, 33(10): 3171–3175, 3177. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210047.htm
ZHOU Bo, WANG Hua-bin, ZHAO Wen-feng, et al. Analysis of relationship between particle mesoscopic and macroscopic mechanical parameters of cohesive materials[J]. Rock and Soil Mechanics, 2012, 33(10): 3171–3175, 3177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210047.htm
|
[34] |
陈建峰, 李辉利, 周健. 黏性土宏细观参数相关性研究[J]. 力学季刊, 2010, 31(2): 304–309. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201002024.htm
CHEN Jian-feng, LI Hui-li, ZHOU Jian. Study on the relevance of macro-micro parameters for clays[J]. Chinese Quarterly of Mechanics, 2010, 31(2): 304–309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201002024.htm
|
[35] |
宁孝梁. 黏性土的细观三轴模拟与微观结构研究[D]. 杭州: 浙江大学, 2017.
NING Xiao-liang. The Meso-Simulations of Triaxial Tests and Microstructure Study of The Cohesive Soil[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
|
[36] |
雷华阳, 王铁英, 张志鹏, 等. 高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1784–1794. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706015.htm
LEI Hua-yang, WANG Tie-ying, ZHANG Zhi-peng, et al. Macro-and meso-analysis of newly formed highly viscous dredger fill under vacuum preloading using particle flow theory[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6): 1784–1794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201706015.htm
|
[37] |
GUI M W, BOLTON M D. Geometry and Scale Effects in CPT and Pile Design, in Geotechnical Site Characterization [M]. Rotterdam: Balkema, 1998: 1063–1068.
|
[38] |
BUTLANSKA J, ARROYO M, GENS A. Size effects on a virtual calibration chamber[M]// Numerical Methods in Geotechnical Engineering: NUMGE 2010. Boca Raton: CRC Press. 2010.
|
[39] |
ARROYO M, BUTLANSKA J, GENS A, et al. Cone penetration tests in a virtual calibration chamber[J]. Géotechnique, 2011, 61(6): 525–531.
|