Citation: | GUO Wenjie, LI Jiabao, LUO Wenjun, HONG Xian, XU Changjie. Method and characteristics of band gap of periodic pile row structures based on domain decomposition and nullspace technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 648-654. DOI: 10.11779/CJGE20221552 |
[1] |
RICHART F E, HALL J R, WOODS R D. Vibrations of Soils and Foundations[M]. Englewood Cliffs, NJ: Prentice-Hall, 1970.
|
[2] |
KATTIS S E, POLYZOS D, BESKOS D E. Structural vibration isolation by rows of piles[C]// Seventh International Conference on Soil Dynamics and Earthquake Engineering (SDEE 95), Crete, Greece, 1995: 509-516.
|
[3] |
孟庆娟, 石志飞. 基于周期理论和COMSOL PDE的排桩减振特性研究[J]. 岩土力学, 2018, 39(11): 4251-4260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm
MENG Qingjuan, SHI Zhifei. Ambient vibration attenuation by periodic pile barriers using periodic theory and COMSOL PDE method[J]. Rock and Soil Mechanics, 2018, 39(11): 4251-4260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm
|
[4] |
巴振宁, 刘世朋, 吴孟桃, 等. 周期分布群桩屏障对平面弹性波隔振效应的解析求解[J]. 岩石力学与工程学报, 2020, 39(7): 1468-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007015.htm
BA Zhenning, LIU Shipeng, WU Mengtao, et al. Analytical solution for isolation effect of periodically distributed pile-group barriers against plane elastic wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1468-1482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007015.htm
|
[5] |
ZHENG G, WANG F J, DU Y M, et al. The efficiency of the ability of isolation piles to control the deformation of tunnels adjacent to excavations[J]. International Journal of Civil Engineering, 2018, 16(10): 1475-1490. doi: 10.1007/s40999-018-0335-7
|
[6] |
CHEN M, JIN G, ZHANG Y, et al. Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness[J]. Composite Structures, 2019, 207: 304-322. doi: 10.1016/j.compstruct.2018.09.029
|
[7] |
华洪良, 廖振强, 张相炎. 轴向移动悬臂梁高效动力学建模及频率响应分析[J]. 力学学报, 2017, 49(6): 1390-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706020.htm
HUA Hongliang, LIAO Zhenqiang, ZHANG Xiangyan. An efficient dynamic modeling method of an axially moving cantilever beam and frequency response analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1390-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706020.htm
|
[8] |
QU Y, WU S, CHEN Y, et al. Vibration analysis of ring-stiffened conical–cylindrical–spherical shells based on a modified variational approach[J]. International Journal of Mechanical Sciences, 2013, 69: 72-84. doi: 10.1016/j.ijmecsci.2013.01.026
|
[9] |
唐豪, 陈晓斌, 唐孟雄, 等. 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43(12): 2169-2179. doi: 10.11779/CJGE202112003
TANG Hao, CHEN Xiaobin, TANG Mengxiong, et al. Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2169-2179. (in Chinese) doi: 10.11779/CJGE202112003
|
[10] |
WANG T, SHENG M P, QIN Q H. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators[J]. Physics Letters A, 2016, 380(4): 525-529. doi: 10.1016/j.physleta.2015.12.010
|
[11] |
张文学, 寇文琦, 陈盈, 等. 基于能量法的斜拉桥纵向1阶自振周期简化计算[J]. 中国公路学报, 2017, 30(7): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707007.htm
ZHANG Wenxue, KOU Wenqi, CHEN Ying, et al. Simplified calculation of first-order longitudinal natural vibration period of cable-stayed bridges based on energy method[J]. China Journal of Highway and Transport, 2017, 30(7): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707007.htm
|
[12] |
WANG T, QIN Q H, ZHU X. Reaction force and power flow analysis of an acoustic metamaterial beam with multi-band gaps[J]. Acoustics Australia, 2019, 48(1): 59-67.
|
[13] |
宋婷婷, 郑玲, 邓杰. 基于高斯展开法的周期声学黑洞宽频能量回收特性研究[J]. 振动与冲击, 2022, 41(10): 186-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202210024.htm
SONG Tingting, ZHENG Ling, DENG Jie. Gaussian expansion method used in a nalysing the broadband energy harvesting characteristics of periodic acoustic black holes[J]. Journal of Vibration and Shock, 2022, 41(10): 186-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202210024.htm
|
[14] |
冯青松, 杨舟, 郭文杰, 等. 基于人工弹簧模型的周期结构带隙计算方法研究[J]. 力学学报, 2021, 53(6): 1684-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202106015.htm
FENG Qingsong, YANG Zhou, GUO Wenjie, et al. Research on band gap calculation method of periodic structure based on artificial spring model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1684-1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202106015.htm
|
[15] |
GUO Wenjie, YANG Zhou, FENG Qingsong, et al. A new method for band gap analysis of periodic structures using virtual spring model and energy functional variational principle[J]. Mechanical Systems and Signal Processing, 2022, 168: 108634. doi: 10.1016/j.ymssp.2021.108634
|
[16] |
TANG L, CHENG L. Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes[J]. Journal of Applied Physics, 2017, 121: 194901. doi: 10.1063/1.4983459
|
[17] |
孟庆娟, 乔京生. 饱和土中周期性排桩隔离体波的性能研究[J]. 振动与冲击, 2020, 39(24): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202024026.htm
MENG Qingjuan, QIAO Jingsheng. Vibration isolation of body waves by periodic pile barriers in saturated soil[J]. Journal of Vibration and Shock, 2020, 39(24): 179-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202024026.htm
|
[18] |
DENG J, XU Y X, ORIOL G, et al. Nullspace technique for imposing constraints in the Rayleigh-Ritz method[J]. Journal of Sound and Vibration, 2022, 527: 116812. doi: 10.1016/j.jsv.2022.116812
|
[19] |
HUANG J K, SHI Z F. Application of periodic theory to rows of piles for horizontal vibration attenuation[J]. International Journal of Geomechanics, 2013, 13(2): 132-142. doi: 10.1061/(ASCE)GM.1943-5622.0000193
|
[1] | WANG Mingyuan, SUN Jizhu, WANG Yong, YANG Yang. Bounding surface plastic p-y model for a single laterally loaded pile in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 85-90. DOI: 10.11779/CJGE2023S20006 |
[2] | WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229 |
[3] | WANG Chun-ying, CAI Guo-qing, HAN Bo-wen, SU Yan-lin, LI Meng-zi, LI Jian. A structural bounding surface constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 148-153. DOI: 10.11779/CJGE2022S1027 |
[4] | FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014 |
[5] | FANG Huo-lang, CAI Yun-hui, WANG Wen-jie. State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. DOI: 10.11779/CJGE201812002 |
[6] | FANG Huo-lang, SHEN Yang, ZHENG Hao, ZENG Ze-bin. Three-dimensional multi-mechanism bounding surface model for sands[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1189-1195. DOI: 10.11779/CJGE201707004 |
[7] | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[8] | An anisotropic bounding surface model for structured soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7). |
[9] | LIU Fangcheng, SHANG Shouping, WANG Haidong, JIANG Longmin. Damping ratio-based bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 851-858. |
[10] | HUANG Maosong, YANG Chao, CUI Yujun. Elasto-plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817-823. |
1. |
冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
![]() | |
2. |
廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 .
![]() | |
3. |
薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
![]() | |
4. |
冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
![]() | |
5. |
庄心善,潘睿捷,夏顺磊. 循环荷载作用下NaCl溶液对黏土动力特性影响及微观机理分析. 河北科技大学学报. 2023(04): 403-410 .
![]() |