• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GUO Wenjie, LI Jiabao, LUO Wenjun, HONG Xian, XU Changjie. Method and characteristics of band gap of periodic pile row structures based on domain decomposition and nullspace technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 648-654. DOI: 10.11779/CJGE20221552
Citation: GUO Wenjie, LI Jiabao, LUO Wenjun, HONG Xian, XU Changjie. Method and characteristics of band gap of periodic pile row structures based on domain decomposition and nullspace technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 648-654. DOI: 10.11779/CJGE20221552

Method and characteristics of band gap of periodic pile row structures based on domain decomposition and nullspace technology

More Information
  • Received Date: December 16, 2022
  • Available Online: June 24, 2023
  • Aiming at the problems such as complex structure of displacement function, high calculation cost, and difficulty in waveform fitting caused by the distortion of pile-soil parameters when the traditional energy method is used to solve the band gap of periodic row pile structures, the traditional energy method is improved based on the idea of regional decomposition, and the pile and the soil are modeled separately in independent coordinate systems to overcome the distortion of pile-soil parameters. Then the nullspace technology is used to deal with various boundary constraints, which overcomes the boundary dependency problem in type function construction and greatly improves the computational efficiency. The results show that compared with the wave number finite element method, the proposed method is accurate and reliable, and has efficiency advantages. In addition, the elastic modulus of soil and the filling ratio of row piles are the main factors affecting the band gap. Compared with the square periodic row piles, the hexagonal arrangement can obtain higher starting frequency, cut-off frequency and band gap width.
  • [1]
    RICHART F E, HALL J R, WOODS R D. Vibrations of Soils and Foundations[M]. Englewood Cliffs, NJ: Prentice-Hall, 1970.
    [2]
    KATTIS S E, POLYZOS D, BESKOS D E. Structural vibration isolation by rows of piles[C]// Seventh International Conference on Soil Dynamics and Earthquake Engineering (SDEE 95), Crete, Greece, 1995: 509-516.
    [3]
    孟庆娟, 石志飞. 基于周期理论和COMSOL PDE的排桩减振特性研究[J]. 岩土力学, 2018, 39(11): 4251-4260. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm

    MENG Qingjuan, SHI Zhifei. Ambient vibration attenuation by periodic pile barriers using periodic theory and COMSOL PDE method[J]. Rock and Soil Mechanics, 2018, 39(11): 4251-4260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811042.htm
    [4]
    巴振宁, 刘世朋, 吴孟桃, 等. 周期分布群桩屏障对平面弹性波隔振效应的解析求解[J]. 岩石力学与工程学报, 2020, 39(7): 1468-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007015.htm

    BA Zhenning, LIU Shipeng, WU Mengtao, et al. Analytical solution for isolation effect of periodically distributed pile-group barriers against plane elastic wave[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1468-1482. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202007015.htm
    [5]
    ZHENG G, WANG F J, DU Y M, et al. The efficiency of the ability of isolation piles to control the deformation of tunnels adjacent to excavations[J]. International Journal of Civil Engineering, 2018, 16(10): 1475-1490. doi: 10.1007/s40999-018-0335-7
    [6]
    CHEN M, JIN G, ZHANG Y, et al. Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness[J]. Composite Structures, 2019, 207: 304-322. doi: 10.1016/j.compstruct.2018.09.029
    [7]
    华洪良, 廖振强, 张相炎. 轴向移动悬臂梁高效动力学建模及频率响应分析[J]. 力学学报, 2017, 49(6): 1390-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706020.htm

    HUA Hongliang, LIAO Zhenqiang, ZHANG Xiangyan. An efficient dynamic modeling method of an axially moving cantilever beam and frequency response analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1390-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201706020.htm
    [8]
    QU Y, WU S, CHEN Y, et al. Vibration analysis of ring-stiffened conical–cylindrical–spherical shells based on a modified variational approach[J]. International Journal of Mechanical Sciences, 2013, 69: 72-84. doi: 10.1016/j.ijmecsci.2013.01.026
    [9]
    唐豪, 陈晓斌, 唐孟雄, 等. 基于复频散曲线特征的周期结构高铁路基减振研究[J]. 岩土工程学报, 2021, 43(12): 2169-2179. doi: 10.11779/CJGE202112003

    TANG Hao, CHEN Xiaobin, TANG Mengxiong, et al. Vibration reduction of high-speed railway subgrade with periodic structures based on complex dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2169-2179. (in Chinese) doi: 10.11779/CJGE202112003
    [10]
    WANG T, SHENG M P, QIN Q H. Multi-flexural band gaps in an Euler–Bernoulli beam with lateral local resonators[J]. Physics Letters A, 2016, 380(4): 525-529. doi: 10.1016/j.physleta.2015.12.010
    [11]
    张文学, 寇文琦, 陈盈, 等. 基于能量法的斜拉桥纵向1阶自振周期简化计算[J]. 中国公路学报, 2017, 30(7): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707007.htm

    ZHANG Wenxue, KOU Wenqi, CHEN Ying, et al. Simplified calculation of first-order longitudinal natural vibration period of cable-stayed bridges based on energy method[J]. China Journal of Highway and Transport, 2017, 30(7): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707007.htm
    [12]
    WANG T, QIN Q H, ZHU X. Reaction force and power flow analysis of an acoustic metamaterial beam with multi-band gaps[J]. Acoustics Australia, 2019, 48(1): 59-67.
    [13]
    宋婷婷, 郑玲, 邓杰. 基于高斯展开法的周期声学黑洞宽频能量回收特性研究[J]. 振动与冲击, 2022, 41(10): 186-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202210024.htm

    SONG Tingting, ZHENG Ling, DENG Jie. Gaussian expansion method used in a nalysing the broadband energy harvesting characteristics of periodic acoustic black holes[J]. Journal of Vibration and Shock, 2022, 41(10): 186-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202210024.htm
    [14]
    冯青松, 杨舟, 郭文杰, 等. 基于人工弹簧模型的周期结构带隙计算方法研究[J]. 力学学报, 2021, 53(6): 1684-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202106015.htm

    FENG Qingsong, YANG Zhou, GUO Wenjie, et al. Research on band gap calculation method of periodic structure based on artificial spring model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1684-1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202106015.htm
    [15]
    GUO Wenjie, YANG Zhou, FENG Qingsong, et al. A new method for band gap analysis of periodic structures using virtual spring model and energy functional variational principle[J]. Mechanical Systems and Signal Processing, 2022, 168: 108634. doi: 10.1016/j.ymssp.2021.108634
    [16]
    TANG L, CHENG L. Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes[J]. Journal of Applied Physics, 2017, 121: 194901. doi: 10.1063/1.4983459
    [17]
    孟庆娟, 乔京生. 饱和土中周期性排桩隔离体波的性能研究[J]. 振动与冲击, 2020, 39(24): 179-186. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202024026.htm

    MENG Qingjuan, QIAO Jingsheng. Vibration isolation of body waves by periodic pile barriers in saturated soil[J]. Journal of Vibration and Shock, 2020, 39(24): 179-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202024026.htm
    [18]
    DENG J, XU Y X, ORIOL G, et al. Nullspace technique for imposing constraints in the Rayleigh-Ritz method[J]. Journal of Sound and Vibration, 2022, 527: 116812. doi: 10.1016/j.jsv.2022.116812
    [19]
    HUANG J K, SHI Z F. Application of periodic theory to rows of piles for horizontal vibration attenuation[J]. International Journal of Geomechanics, 2013, 13(2): 132-142. doi: 10.1061/(ASCE)GM.1943-5622.0000193
  • Related Articles

    [1]WANG Mingyuan, SUN Jizhu, WANG Yong, YANG Yang. Bounding surface plastic p-y model for a single laterally loaded pile in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 85-90. DOI: 10.11779/CJGE2023S20006
    [2]WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229
    [3]WANG Chun-ying, CAI Guo-qing, HAN Bo-wen, SU Yan-lin, LI Meng-zi, LI Jian. A structural bounding surface constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 148-153. DOI: 10.11779/CJGE2022S1027
    [4]FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014
    [5]FANG Huo-lang, CAI Yun-hui, WANG Wen-jie. State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. DOI: 10.11779/CJGE201812002
    [6]FANG Huo-lang, SHEN Yang, ZHENG Hao, ZENG Ze-bin. Three-dimensional multi-mechanism bounding surface model for sands[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1189-1195. DOI: 10.11779/CJGE201707004
    [7]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [8]An anisotropic bounding surface model for structured soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [9]LIU Fangcheng, SHANG Shouping, WANG Haidong, JIANG Longmin. Damping ratio-based bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 851-858.
    [10]HUANG Maosong, YANG Chao, CUI Yujun. Elasto-plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817-823.
  • Cited by

    Periodical cited type(5)

    1. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    2. 廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
    4. 冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
    5. 庄心善,潘睿捷,夏顺磊. 循环荷载作用下NaCl溶液对黏土动力特性影响及微观机理分析. 河北科技大学学报. 2023(04): 403-410 .

    Other cited types(3)

Catalog

    Article views (299) PDF downloads (61) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return