• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014
Citation: FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014

An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory

More Information
  • Received Date: March 12, 2020
  • Available Online: December 04, 2022
  • The elastoplastic dynamic constitutive model plays an important role in the design of embankment or foundation under cyclic loading. The main challenge in the design of geotechnical engineering is to establish a dynamic constitutive model which is practical and universal. Based on the critical state theory, an elasto-plastic constitutive model is established to characterize the cyclic degradation, hysteresis and deformation accumulation of saturated soft clay under cyclic loading. In the p’-q space, parameters n and ξ are introduced into the Cam-clay model, and the Cambridge bounding surface equations, which can reflect the shape of water drop and similar ellipse, are proposed. Based on the triangle similarity principle, the mapping relationship between the loading surface and the yield surface is established, and the cyclic degradation modulus field is formed. Nine parameters in the model are determined by the routine laboratory tests. To verify the correctness of the model, the dynamic triaxial tests and numerical simulations are carried out under the isotropic cyclic loading and the anisotropic cyclic loading. The stress-strain relationship and stress paths of the saturated soft clay are analyzed. The research results demonstrate that the test results are basically consistent with the predicted ones by the model, and the proposed model can correctly analyze the cyclic degradation, nonlinearity, strain accumulation and hysteresis characteristics of saturated soft clay.
  • [1]
    LEI H, FENG S, JIANG Y. Geotechnical characteristics and consolidation properties of Tianjin marine clay[J]. Geomechanics and Engineering, 2018, 16(2): 125-140.
    [2]
    GU C, GU Z, CAI Y, et al. Dynamic modulus characteristics of saturated clays under variable confining pressure[J]. Canadian Geotechnical Journal, 2017, 54(5): 729-735. doi: 10.1139/cgj-2016-0441
    [3]
    BISOI S, HALDAR S. 3D Modeling of long-term dynamic behavior of monopile-supported offshore wind turbine in clay[J]. International Journal of Geomechanics, 2019, 19(7): 04019062-1-04019062-13.
    [4]
    蔡袁强, 柳伟, 徐长节, 等. 基于修正Iwan模型的软黏土动应力-应变关系研究[J]. 岩土工程学报, 2007, 29(9): 1314-1319. doi: 10.3321/j.issn:1000-4548.2007.09.006

    CAI Yuan-qiang, LIU Wei, XU Chang-jie, et al. Study on dynamic stress-strain relationship of soft clay based on modified Iwan’s model under undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1314-1319. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.09.006
    [5]
    KALLIOGLOU P, TIKA T H, PITILAKIS K. Shear modulus and damping ratio of cohesive soils[J]. Journal of Earthquake Engineering, 2008, 12(6): 879-913. doi: 10.1080/13632460801888525
    [6]
    RAGOZZINO E. Seismic response of deep Quaternary sediments in historical center of L’Aquila City (central Italy)[J]. Soil Dynamics and Earthquake Engineering, 2016, 87: 29-43. doi: 10.1016/j.soildyn.2016.04.012
    [7]
    DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica, 1975, 21(3): 173-192. doi: 10.1007/BF01181053
    [8]
    程星磊, 王建华. 考虑循环软化特性的饱和软土弹塑性本构关系研究[J]. 岩土力学, 2015, 36(3): 786-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503028.htm

    CHENG Xing-lei, WANG Jian-hua. Research on elastoplastic constitutive relation for soft clay considering cyclic softening[J]. Rock and Soil Mechanics, 2015, 36(3): 786-794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503028.htm
    [9]
    HU C, LIU H, HUANG W. Anisotropic bounding-surface plasticity model for the cyclic shakedown and degradation of saturated clay[J]. Computers and Geotechnics, 2012, 44: 34-47. doi: 10.1016/j.compgeo.2012.03.009
    [10]
    刘方成, 尚守平, 王海东, 等. 基于阻尼的边界面模型[J]. 岩土工程学报, 2009, 31(6): 851-858. doi: 10.3321/j.issn:1000-4548.2009.06.006

    LIU Fang-cheng, LIU Shou-ping, WANG Dong-hai, et al. Damping ratio-based bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 851-858. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.006
    [11]
    万征, 孟达. 复杂加载条件下的砂土本构模型[J]. 力学学报, 2018, 50(4): 929-948. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201804021.htm

    WAN Zheng, MENG Da. A constitutive model for sand under complex loading condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 929-948. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201804021.htm
    [12]
    ZHOU C, FONG K Y, NG C W W. A new bounding surface model for thermal cyclic behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(16): 1656-1666. doi: 10.1002/nag.2688
    [13]
    YAO Y P, KONG Y X. Extended UH model: Three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853-866. doi: 10.1061/(ASCE)EM.1943-7889.0000397
    [14]
    王元战, 黄东旭, 肖忠. 天津滨海地区两种典型软黏土蠕变特性试验研究[J]. 岩土工程学报, 2011, 34(2): 379-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202034.htm

    WANG Yuan-zhan, HUANG Dong-xu, XIAO Zhong. Experimental research on creep properties of two typical soft clays in coastal region of Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2011, 34(2): 379-380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202034.htm
    [15]
    XIAO Y, LIU H, CHEN Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002-1-04014002-14.
    [16]
    土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Soil Test Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    [17]
    费康, 刘汉龙. 边界面模型在ABAQUS的开发应用[J]. 解放军理工大学学报(自然科学版), 2009, 10(5): 447-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200905007.htm

    FEI Kang, LIU Han-long. Implementation and application of bounding surface model in ABAQUS[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2009, 10(5): 447-451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200905007.htm
    [18]
    王军. 单、双向激振循环荷载作用下饱和软黏土动力特性研究[D]. 杭州: 浙江大学, 2007.

    WANG Jun. Study on Dynamic Behavior of Saturated Soft Clay Under Unidirectional and Bidirectional Cyclic Loading[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
  • Related Articles

    [1]WAN Jun-jie, CHEN Xiang-bin, YANG Yang, QIU Zhen-feng. New conductive plastic drainage board and its electro-osmosis drainage effect under double-layer horizontal layout[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2335-2340. DOI: 10.11779/CJGE202212022
    [2]WANG Jing-zhou, DING Xuan-ming, JIANG Chun-yong, FANG Hua-qiang. Laboratory tests on vacuum preloading and electro-osmotic consolidation of calcareous soft soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 36-40. DOI: 10.11779/CJGE2021S2009
    [3]SHEN Yang, QIU Chen-chen, SONG Shun-xiang, RUI Xiao-xi, SHI Wen. Experimental study on electro-osmosis chemical grouting reinforcement of marine soft clay using tubular EKG[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 57-61. DOI: 10.11779/CJGE2017S2015
    [4]QIU Chen-chen, SHEN Yang, LI Yan-de, YOU Yan-feng, RUI Xiao-xi. Laboratory tests on soft clay using electro-osmosis in combination with vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 251-255. DOI: 10.11779/CJGE2017S1050
    [5]ZHUANG Yan-feng. Theory and design method for electro-osmotic consolidation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 152-155. DOI: 10.11779/CJGE2016S1028
    [6]LIU Ai-min, LIANG Ai-hua, YIN Chang-quan. Comparative tests on reinforcement effects of integral and ordinary plastic drainage boards[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 130-133. DOI: 10.11779/CJGE2016S1024
    [7]CUI Shi-ping. Model test on filtration fabrics of drainage board in reinforcement of soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 87-93. DOI: 10.11779/CJGE2016S1016
    [8]WANG Ning-wei, JIAO Jun, XIU Yan-ji, ZHANG Lei. Effect of electrode spacing on standard electro-osmotic dewatering[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 177-181.
    [9]LI Ying, GONG Xiao-nan. Experimental study on effect of soil salinity on electro-osmotic dewatering in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1254-1259.
    [10]HU Yuchen, WANG Zhao, ZHUANG Yanfeng. Experimental studies on electro-osmotic consolidation of soft clay using EKG electrodes[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 582-586.

Catalog

    Article views (415) PDF downloads (266) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return