• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014
Citation: FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014

An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory

More Information
  • Received Date: March 12, 2020
  • Available Online: December 04, 2022
  • The elastoplastic dynamic constitutive model plays an important role in the design of embankment or foundation under cyclic loading. The main challenge in the design of geotechnical engineering is to establish a dynamic constitutive model which is practical and universal. Based on the critical state theory, an elasto-plastic constitutive model is established to characterize the cyclic degradation, hysteresis and deformation accumulation of saturated soft clay under cyclic loading. In the p’-q space, parameters n and ξ are introduced into the Cam-clay model, and the Cambridge bounding surface equations, which can reflect the shape of water drop and similar ellipse, are proposed. Based on the triangle similarity principle, the mapping relationship between the loading surface and the yield surface is established, and the cyclic degradation modulus field is formed. Nine parameters in the model are determined by the routine laboratory tests. To verify the correctness of the model, the dynamic triaxial tests and numerical simulations are carried out under the isotropic cyclic loading and the anisotropic cyclic loading. The stress-strain relationship and stress paths of the saturated soft clay are analyzed. The research results demonstrate that the test results are basically consistent with the predicted ones by the model, and the proposed model can correctly analyze the cyclic degradation, nonlinearity, strain accumulation and hysteresis characteristics of saturated soft clay.
  • [1]
    LEI H, FENG S, JIANG Y. Geotechnical characteristics and consolidation properties of Tianjin marine clay[J]. Geomechanics and Engineering, 2018, 16(2): 125-140.
    [2]
    GU C, GU Z, CAI Y, et al. Dynamic modulus characteristics of saturated clays under variable confining pressure[J]. Canadian Geotechnical Journal, 2017, 54(5): 729-735. doi: 10.1139/cgj-2016-0441
    [3]
    BISOI S, HALDAR S. 3D Modeling of long-term dynamic behavior of monopile-supported offshore wind turbine in clay[J]. International Journal of Geomechanics, 2019, 19(7): 04019062-1-04019062-13.
    [4]
    蔡袁强, 柳伟, 徐长节, 等. 基于修正Iwan模型的软黏土动应力-应变关系研究[J]. 岩土工程学报, 2007, 29(9): 1314-1319. doi: 10.3321/j.issn:1000-4548.2007.09.006

    CAI Yuan-qiang, LIU Wei, XU Chang-jie, et al. Study on dynamic stress-strain relationship of soft clay based on modified Iwan’s model under undrained cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1314-1319. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.09.006
    [5]
    KALLIOGLOU P, TIKA T H, PITILAKIS K. Shear modulus and damping ratio of cohesive soils[J]. Journal of Earthquake Engineering, 2008, 12(6): 879-913. doi: 10.1080/13632460801888525
    [6]
    RAGOZZINO E. Seismic response of deep Quaternary sediments in historical center of L’Aquila City (central Italy)[J]. Soil Dynamics and Earthquake Engineering, 2016, 87: 29-43. doi: 10.1016/j.soildyn.2016.04.012
    [7]
    DAFALIAS Y F, POPOV E P. A model of nonlinearly hardening materials for complex loading[J]. Acta Mechanica, 1975, 21(3): 173-192. doi: 10.1007/BF01181053
    [8]
    程星磊, 王建华. 考虑循环软化特性的饱和软土弹塑性本构关系研究[J]. 岩土力学, 2015, 36(3): 786-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503028.htm

    CHENG Xing-lei, WANG Jian-hua. Research on elastoplastic constitutive relation for soft clay considering cyclic softening[J]. Rock and Soil Mechanics, 2015, 36(3): 786-794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503028.htm
    [9]
    HU C, LIU H, HUANG W. Anisotropic bounding-surface plasticity model for the cyclic shakedown and degradation of saturated clay[J]. Computers and Geotechnics, 2012, 44: 34-47. doi: 10.1016/j.compgeo.2012.03.009
    [10]
    刘方成, 尚守平, 王海东, 等. 基于阻尼的边界面模型[J]. 岩土工程学报, 2009, 31(6): 851-858. doi: 10.3321/j.issn:1000-4548.2009.06.006

    LIU Fang-cheng, LIU Shou-ping, WANG Dong-hai, et al. Damping ratio-based bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 851-858. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.006
    [11]
    万征, 孟达. 复杂加载条件下的砂土本构模型[J]. 力学学报, 2018, 50(4): 929-948. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201804021.htm

    WAN Zheng, MENG Da. A constitutive model for sand under complex loading condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 929-948. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201804021.htm
    [12]
    ZHOU C, FONG K Y, NG C W W. A new bounding surface model for thermal cyclic behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(16): 1656-1666. doi: 10.1002/nag.2688
    [13]
    YAO Y P, KONG Y X. Extended UH model: Three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853-866. doi: 10.1061/(ASCE)EM.1943-7889.0000397
    [14]
    王元战, 黄东旭, 肖忠. 天津滨海地区两种典型软黏土蠕变特性试验研究[J]. 岩土工程学报, 2011, 34(2): 379-380. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202034.htm

    WANG Yuan-zhan, HUANG Dong-xu, XIAO Zhong. Experimental research on creep properties of two typical soft clays in coastal region of Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2011, 34(2): 379-380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202034.htm
    [15]
    XIAO Y, LIU H, CHEN Y, et al. Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions[J]. Journal of Engineering Mechanics, 2014, 140(4): 04014002-1-04014002-14.
    [16]
    土工试验方法标准:GB/T 50123—2019[S]. 2019.

    Standard for Soil Test Method: GB/T 50123—2019[S]. 2019. (in Chinese)
    [17]
    费康, 刘汉龙. 边界面模型在ABAQUS的开发应用[J]. 解放军理工大学学报(自然科学版), 2009, 10(5): 447-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200905007.htm

    FEI Kang, LIU Han-long. Implementation and application of bounding surface model in ABAQUS[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2009, 10(5): 447-451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200905007.htm
    [18]
    王军. 单、双向激振循环荷载作用下饱和软黏土动力特性研究[D]. 杭州: 浙江大学, 2007.

    WANG Jun. Study on Dynamic Behavior of Saturated Soft Clay Under Unidirectional and Bidirectional Cyclic Loading[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
  • Related Articles

    [1]YANG Junchao, XIA Yuanyou, CUI Feilong, LI Lihua, WU Jionghui, CHEN Chen, TIAN Liang. Prediction of strength of silty clay-concrete interface under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 194-199. DOI: 10.11779/CJGE2024S20037
    [2]HUANG Man, WU Yuewei, LIU Dan, HONG Chenjie, DU Shigui, LUO Zhanyou. Experimental study on size effect of shear strength of joints with different infill ratios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1820-1830. DOI: 10.11779/CJGE20230549
    [3]ZHAO Yuxin, ZHANG Luqian, LI Xu, ZHAO Hongfen. Unsaturated shear strength characteristics of coarse-fine mixed soils in a wide range of degree of saturation: experimental phenomena[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2278-2288. DOI: 10.11779/CJGE20220963
    [4]JIANG Mingjie, JI Enyue, WANG Tiancheng, LI Shuya, ZHU Jungao, MEI Guoxiong. Experimental study on laws of scale effects of shear strength of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 855-861. DOI: 10.11779/CJGE20220102
    [5]KONG Ling-wei, XIONG Chun-fa, GUO Ai-guo, YANG Ai-wu. Effects of shear rate on strength properties and pile-soil interface of marine soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 13-16. DOI: 10.11779/CJGE2017S2004
    [6]LI Jian, TANG Chao-sheng, WANG De-yin, SHI Bin, PEI Xiang-jun. Single fiber pullout tests on interfacial shear strength of wave-shape fiber-reinforced soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1696-1704. DOI: 10.11779/CJGE201409017
    [7]XU Xiao-feng, WEI Hou-zhen, MENG Qing-shan, WEI Chang-fu, AI Dong-hai. Effects of shear rate on shear strength and deformation characteristics of coarse-grained soils in large-scale direct shear tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 728-733.
    [8]CAI Jian, CAI Ji-feng. True shear strength of soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 934.
    [9]DONG Jinrong. Analysis on uplift resistance of cast-in-situ piles with large diameter[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 254-258.
    [10]CAI Jian, ZHOU Jian. Unloading shear strength of soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 606-610.
  • Cited by

    Periodical cited type(16)

    1. 姚志华,张建华,辛建平,穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性. 材料导报. 2024(05): 65-72 .
    2. 张迪,徐孟涛,孙峰,曹刚,李佳豪. 剪切模式对砂-钢界面特性的影响. 船舶工程. 2024(07): 175-181 .
    3. 张玉,陶子卓,栾雅琳,狄圣杰,林亮. 分解条件下含可燃冰砂土–开采井界面弱化规律试验研究. 岩石力学与工程学报. 2024(S2): 3988-3999 .
    4. 郭聚坤,王瑞,寇海磊,尹锡军,魏道凯,雷胜友. 纹理特征对钢与砂界面剪切性能的影响. 中国科技论文. 2023(02): 172-178 .
    5. 刘书杰,何连,刘正,包兴先,王腾. 深水井口导管管土界面摩擦退化试验研究. 海洋科学. 2023(10): 25-31 .
    6. 张玲,徐泽宇,姚攀,赵明华,陈龙. 筋箍碎石桩桩–土界面摩擦特性试验研究及离散元模拟. 岩土工程学报. 2022(01): 72-81+201 . 本站查看
    7. 李大勇,张雨坤,高玉峰,房兆晓. 不同剪切速率下吸力基础-黏土界面剪切特性研究. 防灾减灾工程学报. 2022(01): 231-236 .
    8. 金鑫,王铁行,郝延周,赵再昆,张亮,张猛. 桩间黄土卸荷湿陷过程中卸荷量计算方法初探. 岩土力学. 2022(09): 2399-2409 .
    9. 丁昊,杨桦,郭帅,宋翔,罗寰,付开,张世民. 黏土地层中PC工法桩振动沉桩环境效益分析. 浙江建筑. 2022(06): 47-51 .
    10. 于鹏,刘灿,刘红军,于雅琼. 黄河三角洲粉土-钢界面大型剪切试验研究. 中国海洋大学学报(自然科学版). 2021(09): 71-79 .
    11. 曹海莹,郭毅磊,杜量. 动、静载环境下界面土直剪试验. 吉林大学学报(地球科学版). 2021(05): 1381-1390 .
    12. 于荣林,朱兆勇,杨宏伟. 天津东站地下变电站超长桩承载力试验研究. 勘察科学技术. 2020(01): 27-32 .
    13. 刘鑫喜,高洪梅,徐琪尔,梁波,樊宝云,黄舒淇,卢广. 聚苯乙烯泡沫材料与不同土体间的接触面剪切特性. 广东土木与建筑. 2020(07): 107-111 .
    14. 孙亭亭,杨吉新,张志华,杨竟南,张璇,石旷. 基于离散元的拔桩过程中土体动力响应分析. 武汉理工大学学报(交通科学与工程版). 2020(04): 663-668 .
    15. 杨鑫,崔宏环,张立群,崔颖辉. 砂土-结构接触面剪切特性大型直剪试验研究. 铁道科学与工程学报. 2019(05): 1207-1215 .
    16. 谢亦朋,杨秀竹,阳军生,张聪,戴勇,梁雄,龚方浩. 松散堆积体隧道围岩变形破坏细观特征研究. 岩土力学. 2019(12): 4925-4934 .

    Other cited types(22)

Catalog

    Article views PDF downloads Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return