Citation: | ZHAO Yuxin, ZHANG Luqian, LI Xu, ZHAO Hongfen. Unsaturated shear strength characteristics of coarse-fine mixed soils in a wide range of degree of saturation: experimental phenomena[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2278-2288. DOI: 10.11779/CJGE20220963 |
[1] |
詹良通, 李鹤, 陈云敏, 等. 东南沿海残积土地区降雨诱发型滑坡预报雨强-历时曲线的影响因素分析[J]. 岩土力学, 2012, 33(3): 872-880, 886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201203036.htm
ZHAN Liangtong, LI He, CHEN Yunmin, et al. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in Southeastern coastal areas of China[J]. Rock and Soil Mechanics, 2012, 33(3): 872-880, 886. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201203036.htm
|
[2] |
ZHAO H F, ZHANG L M, FREDLUND D G. Bimodal shear-strength behavior of unsaturated coarse-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2070-2081. doi: 10.1061/(ASCE)GT.1943-5606.0000937
|
[3] |
ZHAO H F, ZHANG L M. Effect of coarse content on shear behavior of unsaturated coarse granular soils[J]. Canadian Geotechnical Journal, 2014, 51(12): 1371-1383. doi: 10.1139/cgj-2012-0292
|
[4] |
ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987. doi: 10.1139/cgj-2015-0322
|
[5] |
LEE I M, SUNG S G, CHO G C. Effect of stress state on the unsaturated shear strength of a weathered granite[J]. Canadian Geotechnical Journal, 2005, 42(2): 624-631. doi: 10.1139/t04-091
|
[6] |
HOSSAIN M A, YIN J H. Behavior of a compacted completely decomposed granite soil from suction controlled direct shear tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 189-198. doi: 10.1061/(ASCE)GT.1943-5606.0000189
|
[7] |
孙德安, 徐钱垒, 陈波, 等. 广吸力范围内非饱和原状黄土的力学特性[J]. 岩土工程学报, 2020, 42(9): 1586-1592. doi: 10.11779/CJGE202009002
SUN Dean, XU Qianlei, CHEN Bo, et al. Mechanical behavior of unsaturated intact loess over a wide suction range[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1586-1592. (in Chinese) doi: 10.11779/CJGE202009002
|
[8] |
ZHANG J R, SUN D A, ZHOU A N, et al. Hydromechanical behaviour of expansive soils with different suctions and suction histories[J]. Canadian Geotechnical Journal, 2016, 53(1): 1-13. doi: 10.1139/cgj-2014-0366
|
[9] |
NG C W W, SADEGHI H, JAFARZADEH F. Compression and shear strength characteristics of compacted loess at high suctions[J]. Canadian Geotechnical Journal, 2017, 54(5): 690-699. doi: 10.1139/cgj-2016-0347
|
[10] |
PATIL U D, PUPPALA A J, HOYOS L R, et al. Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing[J]. Engineering Geology, 2017, 231: 21-33. doi: 10.1016/j.enggeo.2017.10.011
|
[11] |
高游. 广吸力范围内非饱和土的土水和力学特性研究[D]. 上海: 上海大学, 2018.
GAO You. Study on Soil Water and Mechanical Properties of Unsaturated Soil in Wide Suction Range[D]. Shanghai: Shanghai University, 2018. (in Chinese)
|
[12] |
郭志杰. 细粒含量对粗—细粒混合土物理力学特性的影响[D]. 北京: 北京交通大学, 2018.
GUO Zhijie. Effect of Fine Particle Content on Physical and Mechanical Properties of Coarse-Fine Mixed Soil[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[13] |
史新, 庞康, 李旭, 等. 宽级配砾质土防渗性能研究[J]. 岩土工程学报, 2018, 40(增刊2): 189-193. doi: 10.11779/CJGE2018S2038
SHI Xin, PANG Kang, LI Xu, et al. Hydraulic conductivity of widely-graded gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 189-193. (in Chinese) doi: 10.11779/CJGE2018S2038
|
[14] |
庞康. 宽级配砾质土压实性和渗透性研究[D]. 北京: 北京交通大学, 2015.
PANG Kang. Study on Compactness and Permeability of Wide Graded Gravel Soil[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
|
[15] |
李旭, 刘阿强, 刘丽, 等. 全吸力范围内土-水特征曲线的快速测定方法[J]. 岩土力学, 2022, 43(2): 299-306. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202001.htm
LI Xu, LIU Aqiang, LIU Li, et al. A rapid method for determining the soil-water characteristic curves in the full suction range[J]. Rock and Soil Mechanics, 2022, 43(2): 299-306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202001.htm
|
[16] |
田湖南, 孔令伟. 细粒对砂土持水能力影响的试验研究[J]. 岩土力学, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001011.htm
TIAN Hunan, KONG Lingwei. Experimental research on effect of fine grains on water retention capacity of silty sand[J]. Rock and Soil Mechanics, 2010, 31(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001011.htm
|
[17] |
BISHOP A W. Progressive failure with special reference to the mechanism causing it[C]// Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks, Oslo, 1967: 142-150.
|
[18] |
ZHAO H F, CHEN Y D, ZHOU Z X, et al. Consequence of drying on the compression behaviour of soft clay[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 7933-7944.
|
[19] |
ZHANG J R, NIU G, LI X C, et al. Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range[J]. Acta Geotechnica, 2020, 15(1): 265-278.
|
[20] |
周辉, 孟凡震, 张传庆, 等. 基于应力-应变曲线的岩石脆性特征定量评价方法[J]. 岩石力学与工程学报, 2014, 33(6): 1114-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm
ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1114-1122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm
|
[21] |
ZHAO H F, ZHANG L M, CHANG D S. Behavior of coarse widely graded soils under low confining pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 35-48.
|
[22] |
DAVID SUITS L, SHEAHAN T C, YANG S, et al. Determination of the transitional fines content of mixtures of sand and non-plastic fines[J]. Geotechnical Testing Journal, 2006, 29(2): 14010.
|
[23] |
GAO Y, SUN D A, ZHU Z C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14(2): 417-428.
|
[24] |
DONALD I B. Shear strength measurements in unsaturated non-cohesive soils with negative pore pressures[C]// Proc 2nd Australian and New Zealand Conference on Soil Mechanics and Foundation Engineering. Christchurch, 1956: 200-205.
|
[25] |
SUITS L D, SHEAHAN T C, LIKOS W J, et al. Modified direct shear apparatus for unsaturated sands at low suction and stress[J]. Geotechnical Testing Journal, 2010, 33(5): 102927.
|
[26] |
TOWNER G D, CHILDS E C. The mechanical strength of unsaturated porous granular material[J]. Journal of Soil Science, 1972, 23(4): 481-498.
|
[27] |
ESCARIO V, SÁEZ J. The shear strength of partly saturated soils[J]. Géotechnique, 1986, 36(3): 453-456.
|
[28] |
VANAPALLI S K, WRIGHT A, FREDLUND D G. Shear strength behavior of a silty soil over the suction range from 0 to 1, 000, 000 kPa[C]//Proceedings of the 53th Canadian Geotechnical Conference, Montreal, 2000: 15-18.
|
[29] |
赵煜鑫, 刘艳, 李旭, 等. 非饱和黏性土抗剪强度模型对比分析及参数确定方法[J]. 岩土工程学报, 2022, 44(增刊1): 126-131. doi: 10.11779/CJGE2022S1023
ZHAO Yuxin, LIU Yan, LI Xu, et al. Comparative analysis and parameter determination method of shear strength models for unsaturated clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 126-131. (in Chinese) doi: 10.11779/CJGE2022S1023
|
[30] |
GAO Y, SUN D A, ZHOU A N, et al. Predicting shear strength of unsaturated soils over wide suction range[J]. International Journal of Geomechanics, 2020, 20(2): 04019175.
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |