• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
Citation: ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.

Bounding-surface constitutive model for saturated sands based on phase transformation state

More Information
  • Received Date: May 06, 2012
  • Published Date: May 26, 2013
  • To well describe the stress-stain behaviour of sands, generally, a state parameter based on the critical state void is used to establish the elastoplastic constitutive relations. However, it is difficult to obtain the critical state parameter in the triaxial drained tests for dense sands. For the phase transformation state, being a characteristic state, its related parameters are easy to be measured. Based on the phase transformation state and considering the stress-induced anisotropy, the state parameter is defined, and a bounding-surface constitutive model for saturated sands is established. Finally, utilizing the provided model parameters, the simulated results fit well with the test ones and realistically reflect the strain hardening and softening characteristics for dense sands.
  • [1]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[C]// Proceedings the Royal of Society, 1962, A269: 500-527.
    [2]
    ROSCOE K H, SCHOFIELD A N. Mechanical behavior of an idealized wetclay[C]// Proceedings of the European conference on SMFE, Wiesbaden. 1963: 47-54.
    [3]
    NOVA R. A constitutive model for soil under monotonic and cyclic loading[M]// PANDE G N, ZIENKIEWICZ O C. Soil Mechanics Transient and Cyclic Loads. New York: Wiley, 1982:343-373.
    [4]
    JEFFERIES M G. NorSand: A simple critical state model for sand[J]. G000e9;otechnique, 1993,43:91-103.
    [5]
    MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. G000e9;otechnique, 1997,47(2):255-272.
    [6]
    GAJO A, MUIR Wood D. Severn-trent sand: a kinematic hardening constitutive model: the q -p formulation[J]. G000e9;otechnique, 1999,49(5):595-614.
    [7]
    LI X S, DAFALIAS Y F, WANG Z L. State-dependent dilatancy in critical-state constitutive modeling of sand[J]. Canadian Geotechnical Journal, 1999,36(4):599-611.
    [8]
    WAN R G, GUO P J. Drained cyclic behavior of sand with fabric dependence[J]. Journal of Engineering Mechanics, 2001,127(11):1106-1116.
    [9]
    YANG Y, MURALEETHARAN K K. Middle surface concept and its application to elastoplastic behavior of saturated sands[J]. G000e9;otechnique, 2003,53(4):421-431.
    [10]
    TAIEBAT M, DAFALIAS Y F. SANISAND: Simple anisotropic sand plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008,32(8):915-948.
    [11]
    ANANDARAJAH A. Modeling liquefaction by a multimechanism model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008,134(7):949-959.
    [12]
    YIN Z-Y, CHANG C S, HICHER P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[J]. International Journal of Solids and Structures, 2010,47(14/15):1933-1951.
    [13]
    CHANG C S, YIN Z-Y. Modeling stress-dilatancy for sand under compression and extension loading conditions[J]. Journal of Engineering Mechanics, ASCE, 2010, 136(6):777-786.
    [14]
    YIN Z-Y,CHANG C S Stress-dilatancy for sand under loading and unloading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics,in press DOI: 10.1002/nag.1125.
    [15]
    VERDUGO R, ISHIHARA K. The steady state of sandy soils [J]. Soils and Foundations, 1996,36(2):81-91.
    [16]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. G000e9;otechnique, 1985,36(1):123-132.
    [17]
    BOLTON M D. The strength and dilatancy of sands[J]. G000e9;otechnique, 1986,36(1):65-78.
    [18]
    ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. G000e9;otechnique, 1993,43(3):351-415.
    [19]
    CHU J. An experimental examination of the critical state and other similar concepts for granular soils[J]. Canadian Geotechnical Journal, 1995,32:1065-1075.
    [20]
    ALPS Mike. The phase transformation friction angle of sand[D]. Reno: University of Nevada, 2007.
    [21]
    WROTH C P, BASSETT R H. A stress-strain relationship for the shearing behavior of sand[J]. G000e9;otechnique, 1965,15(1):32-56.
    [22]
    YOSHIMINE M, ROBERTSON P K, WRIDE C E. Undrained shear strength of clean sands to trigger flow liquefaction[J]. Canadian Geotechnical Journal, 1999,36(5):891-906.
    [23]
    WOOD D M, BELKHEIR K, LIU D F. Strain softening and state parameters for sand modelling[J]. G000e9;otechnique, 1994,44(2):335-339.
    [24]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils. G000e9;otechnique, 2000,50(4):449-460.
    [25]
    POOROOSHASB H B, SHERBOURNE A N. Yielding and flow of sand in triaxial compression: Part I[J]. Canadian Geotechnical Journal, 1966,3(4):179-190.
    [26]
    POOROOSHASB H B, SHERBOURNE A N. Yielding and flow of sand in triaxial compression, part II[J]. Canadian Geotechnical Journal, 1967,4(4):376-397.
    [27]
    RICHART F E, HALL J R, WOODS R D. Vibration of soils and foundations[M]. Englewood: Prentice-Hall Inc., 1970.
    [28]
    NOVA R, WOOD D M. A constitutive model for sands in triaxial compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979,3(3):255-278.
    [29]
    DESAI C S. Constitutive modelling using the disturbed state as microstructure self-adjustment concept[M]// MUHLHAUS H B. Continuum Models for Materials with Microstructure. UK: John Wiley, 1995.
    [30]
    HORNE M R. The behaviour of an assembly of rotund, rigid, cohesionless particles II[C]// Proceedings the Royal of Society London, Series A. 1965, 286(1404):79-97.
    [31]
    LI X, LI X S. Micro-macro quantification of the internal structure of granular materials[J]. Journal of Engineering Mechanics, ASCE, 2009, 135(7):641-656.
    [32]
    DAFALIAS Y F. Bounding surface plasticity. i: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986,112(9):966-987.
    [33]
    KATRINA Regier. The stress-dilatancy behavior of sands:pressure and density dependence in both monotonic and cyclic loading regime[D]. Calgary: University of Calgary, 1997.
  • Related Articles

    [1]WANG Nian-xiang, ZHOU Chun-er, WU Jia-wu, REN Guo-feng. Field tests on bearing capacities of CFG pile and root pile[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 194-197. DOI: 10.11779/CJGE2022S2042
    [2]WANG Nian-xiang, LIU Chao, LIN Xian-cai, CAO Chang-hao, LIAN Chang-qiu. Comparative analysis of bearing capacity of CFG single pile by centrifugal model tests and field tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 6-10. DOI: 10.11779/CJGE2022S2002
    [3]SUN Li-qiang, SHAO Dan-dan, FENG Shou-zhong, DENG Wei-dong, HAO Wan-dong, CHEN Jian-feng. Bearing capacity of geosynthetics-enclosed stone columns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 29-32. DOI: 10.11779/CJGE2019S2008
    [4]MA Tian-zhong, ZHU Yan-peng, REN Yong-zhong, LING Yong-qiang. Bearing capacity and displacement characteristics of long-short composite piles in loess areas[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 259-265. DOI: 10.11779/CJGE2018S1042
    [5]HUANG Sheng-gen. Experimental study on bearing behaviors of composite foundation with CFG piles with caps under flexible loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 564-568.
    [6]Experimental study on deformation and bearing capacity of composite foundation with concrete-cored sand-gravel piles under high embankment load[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1829-1836.
    [7]DING Guiling, WANG Lianjun, LIU Shengchuan. Effect of cushion thickness on deformation characteristics of CFG pile composite foundation with caps under flexible load[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 997-1001.
    [8]LIU Sancang, SUI Guoxiu, LIU Zhiwei. Research on bearing capacity of cast-in-place piles in unsaturated to saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 147-151.
    [9]Gong Weiming, Jiang Yongsheng, Zhai Jin. Self-balanced loading test for pile bearing capacity[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 532-536.
    [10]Wei Jie. Theoretical Method for Determining the Bearing Capacity of Pile from Static Cone Penetration[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 103-111.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return