Citation: | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[1] |
ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[C]// Proceedings the Royal of Society, 1962, A269: 500-527.
|
[2] |
ROSCOE K H, SCHOFIELD A N. Mechanical behavior of an idealized wetclay[C]// Proceedings of the European conference on SMFE, Wiesbaden. 1963: 47-54.
|
[3] |
NOVA R. A constitutive model for soil under monotonic and cyclic loading[M]// PANDE G N, ZIENKIEWICZ O C. Soil Mechanics Transient and Cyclic Loads. New York: Wiley, 1982:343-373.
|
[4] |
JEFFERIES M G. NorSand: A simple critical state model for sand[J]. G000e9;otechnique, 1993,43:91-103.
|
[5] |
MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. G000e9;otechnique, 1997,47(2):255-272.
|
[6] |
GAJO A, MUIR Wood D. Severn-trent sand: a kinematic hardening constitutive model: the q -p formulation[J]. G000e9;otechnique, 1999,49(5):595-614.
|
[7] |
LI X S, DAFALIAS Y F, WANG Z L. State-dependent dilatancy in critical-state constitutive modeling of sand[J]. Canadian Geotechnical Journal, 1999,36(4):599-611.
|
[8] |
WAN R G, GUO P J. Drained cyclic behavior of sand with fabric dependence[J]. Journal of Engineering Mechanics, 2001,127(11):1106-1116.
|
[9] |
YANG Y, MURALEETHARAN K K. Middle surface concept and its application to elastoplastic behavior of saturated sands[J]. G000e9;otechnique, 2003,53(4):421-431.
|
[10] |
TAIEBAT M, DAFALIAS Y F. SANISAND: Simple anisotropic sand plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008,32(8):915-948.
|
[11] |
ANANDARAJAH A. Modeling liquefaction by a multimechanism model[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008,134(7):949-959.
|
[12] |
YIN Z-Y, CHANG C S, HICHER P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[J]. International Journal of Solids and Structures, 2010,47(14/15):1933-1951.
|
[13] |
CHANG C S, YIN Z-Y. Modeling stress-dilatancy for sand under compression and extension loading conditions[J]. Journal of Engineering Mechanics, ASCE, 2010, 136(6):777-786.
|
[14] |
YIN Z-Y,CHANG C S Stress-dilatancy for sand under loading and unloading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics,in press DOI: 10.1002/nag.1125.
|
[15] |
VERDUGO R, ISHIHARA K. The steady state of sandy soils [J]. Soils and Foundations, 1996,36(2):81-91.
|
[16] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. G000e9;otechnique, 1985,36(1):123-132.
|
[17] |
BOLTON M D. The strength and dilatancy of sands[J]. G000e9;otechnique, 1986,36(1):65-78.
|
[18] |
ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. G000e9;otechnique, 1993,43(3):351-415.
|
[19] |
CHU J. An experimental examination of the critical state and other similar concepts for granular soils[J]. Canadian Geotechnical Journal, 1995,32:1065-1075.
|
[20] |
ALPS Mike. The phase transformation friction angle of sand[D]. Reno: University of Nevada, 2007.
|
[21] |
WROTH C P, BASSETT R H. A stress-strain relationship for the shearing behavior of sand[J]. G000e9;otechnique, 1965,15(1):32-56.
|
[22] |
YOSHIMINE M, ROBERTSON P K, WRIDE C E. Undrained shear strength of clean sands to trigger flow liquefaction[J]. Canadian Geotechnical Journal, 1999,36(5):891-906.
|
[23] |
WOOD D M, BELKHEIR K, LIU D F. Strain softening and state parameters for sand modelling[J]. G000e9;otechnique, 1994,44(2):335-339.
|
[24] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils. G000e9;otechnique, 2000,50(4):449-460.
|
[25] |
POOROOSHASB H B, SHERBOURNE A N. Yielding and flow of sand in triaxial compression: Part I[J]. Canadian Geotechnical Journal, 1966,3(4):179-190.
|
[26] |
POOROOSHASB H B, SHERBOURNE A N. Yielding and flow of sand in triaxial compression, part II[J]. Canadian Geotechnical Journal, 1967,4(4):376-397.
|
[27] |
RICHART F E, HALL J R, WOODS R D. Vibration of soils and foundations[M]. Englewood: Prentice-Hall Inc., 1970.
|
[28] |
NOVA R, WOOD D M. A constitutive model for sands in triaxial compression[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979,3(3):255-278.
|
[29] |
DESAI C S. Constitutive modelling using the disturbed state as microstructure self-adjustment concept[M]// MUHLHAUS H B. Continuum Models for Materials with Microstructure. UK: John Wiley, 1995.
|
[30] |
HORNE M R. The behaviour of an assembly of rotund, rigid, cohesionless particles II[C]// Proceedings the Royal of Society London, Series A. 1965, 286(1404):79-97.
|
[31] |
LI X, LI X S. Micro-macro quantification of the internal structure of granular materials[J]. Journal of Engineering Mechanics, ASCE, 2009, 135(7):641-656.
|
[32] |
DAFALIAS Y F. Bounding surface plasticity. i: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986,112(9):966-987.
|
[33] |
KATRINA Regier. The stress-dilatancy behavior of sands:pressure and density dependence in both monotonic and cyclic loading regime[D]. Calgary: University of Calgary, 1997.
|
[1] | WANG Nian-xiang, ZHOU Chun-er, WU Jia-wu, REN Guo-feng. Field tests on bearing capacities of CFG pile and root pile[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 194-197. DOI: 10.11779/CJGE2022S2042 |
[2] | WANG Nian-xiang, LIU Chao, LIN Xian-cai, CAO Chang-hao, LIAN Chang-qiu. Comparative analysis of bearing capacity of CFG single pile by centrifugal model tests and field tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 6-10. DOI: 10.11779/CJGE2022S2002 |
[3] | SUN Li-qiang, SHAO Dan-dan, FENG Shou-zhong, DENG Wei-dong, HAO Wan-dong, CHEN Jian-feng. Bearing capacity of geosynthetics-enclosed stone columns[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 29-32. DOI: 10.11779/CJGE2019S2008 |
[4] | MA Tian-zhong, ZHU Yan-peng, REN Yong-zhong, LING Yong-qiang. Bearing capacity and displacement characteristics of long-short composite piles in loess areas[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 259-265. DOI: 10.11779/CJGE2018S1042 |
[5] | HUANG Sheng-gen. Experimental study on bearing behaviors of composite foundation with CFG piles with caps under flexible loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 564-568. |
[6] | Experimental study on deformation and bearing capacity of composite foundation with concrete-cored sand-gravel piles under high embankment load[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1829-1836. |
[7] | DING Guiling, WANG Lianjun, LIU Shengchuan. Effect of cushion thickness on deformation characteristics of CFG pile composite foundation with caps under flexible load[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(7): 997-1001. |
[8] | LIU Sancang, SUI Guoxiu, LIU Zhiwei. Research on bearing capacity of cast-in-place piles in unsaturated to saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 147-151. |
[9] | Gong Weiming, Jiang Yongsheng, Zhai Jin. Self-balanced loading test for pile bearing capacity[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 532-536. |
[10] | Wei Jie. Theoretical Method for Determining the Bearing Capacity of Pile from Static Cone Penetration[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 103-111. |