• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Chun-ying, CAI Guo-qing, HAN Bo-wen, SU Yan-lin, LI Meng-zi, LI Jian. A structural bounding surface constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 148-153. DOI: 10.11779/CJGE2022S1027
Citation: WANG Chun-ying, CAI Guo-qing, HAN Bo-wen, SU Yan-lin, LI Meng-zi, LI Jian. A structural bounding surface constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 148-153. DOI: 10.11779/CJGE2022S1027

A structural bounding surface constitutive model for unsaturated soils and its verification

More Information
  • Received Date: September 30, 2022
  • Available Online: February 06, 2023
  • Most soils have both unsaturated and structural properties. The establishment of a constitutive model of unsaturated soils considering the structure is of great significance for analyzing the mechanical properties of unsaturated soils. On the basis of the volume variation equation of saturated structural soil, the influence of matrix suction is considered for the structural parameters, combined with the LC yield curve of BBM model, a new volume variation equation of unsaturated structural soil is established, and the deconstruction law is introduced to consider the structure disturbance during isotropic compression under constant suction. The structural strength and its decay law are introduced to consider the influence of the structure on the shear strength, and the deformation characteristics of the unsaturated soil in the three-dimensional state are described based on the bounding surface plasticity theory framework. Parameter calibration and model verification were carried out using the experimental data of unsaturated intact loess in Gorgan area and Xi'an Q2 unsaturated intact loess. The results show that the established model can effectively predict the deformation characteristics of unsaturated structural soil.
  • [1]
    HAERI S M, KHOSRAVI A, GARAKANI A A, et al. Effect of soil structure and disturbance on hydromechanical behavior of collapsible loessial soils[J]. International Journal of Geomechanics, 2017, 17(1): 1–15.
    [2]
    龚晓南, 熊传祥, 项可祥, 等. 黏土结构性对其力学性质的影响及形成原因分析[J]. 水利学报, 2000, 31(10): 43–47. doi: 10.3321/j.issn:0559-9350.2000.10.007

    GONG Xiao-nan, XIONG Chuan-xiang, XIANG Ke-xiang, et al. The formation of clay structure and its influence on mechanical characteristics of clay[J]. Journal of Hydraulic Engineering, 2000, 31(10): 43–47. (in Chinese) doi: 10.3321/j.issn:0559-9350.2000.10.007
    [3]
    AMOROSI A, RAMPELLO S. An experimental investigation into the mechanical behaviour of a structured stiff clay[J]. Géotechnique, 2007, 57(2): 153–166. doi: 10.1680/geot.2007.57.2.153
    [4]
    HUANG Y H, ZHU W, QIAN X D, et al. Change of mechanical behavior between solidified and remolded solidified dredged materials[J]. Engineering Geology, 2011, 119(3/4): 112–119.
    [5]
    BO M W, ARULRAJAH A, SUKMAK P, et al. Mineralogy and geotechnical properties of Singapore marine clay at Changi[J]. Soils and Foundations, 2015, 55(3): 600–613. doi: 10.1016/j.sandf.2015.04.011
    [6]
    刘祖典. 土工研究-黄土力学与工程问题[R]. 西安: 陕西机械学院水利水电学院, 1989.

    LIU Zu-dian. Geotechnical Research-Loess Mechanics and Engineering Problems[R]. Xi'an: Shaanxi Institute of Mechanical Engineering, School of Water Conservancy and Hydropower 1989. (in Chinese)
    [7]
    GARITTE B, VAUNAT J, GENS A. A constitutive model that incorporates the effect of suction in cemented geological materials[C]// Fourth International Conference on Unsaturated Soils. Carefree, 2006: 1944–1955.
    [8]
    方祥位, 李洋洋, 申春妮, 等. 基于扰动状态概念的非饱和原状Q2黄土本构模型[J]. 后勤工程学院学报, 2017, 33(4): 1–8. doi: 10.3969/j.issn.1672-7843.2017.04.001

    FANG Xiang-wei, LI Yang-yang, SHEN Chun-ni, et al. Constitutive model of unsaturated intact Q2 loess based on disturbed state concept[J]. Journal of Logistical Engineering University, 2017, 33(4): 1–8. (in Chinese) doi: 10.3969/j.issn.1672-7843.2017.04.001
    [9]
    金旭, 赵成刚. 非饱和原状土本构模型研究[J]. 北京工业大学学报, 2011, 37(1): 85–91. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201101015.htm

    JIN Xu, ZHAO Cheng-gang. A study on constitutive model of unsaturated natural soils[J]. Journal of Beijing University of Technology, 2011, 37(1): 85–91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201101015.htm
    [10]
    杨超, 崔玉军, 黄茂松, 等. 循环荷载下非饱和结构性黄土的损伤模型[J]. 岩石力学与工程学报, 2008, 27(4): 805–810. doi: 10.3321/j.issn:1000-6915.2008.04.021

    YANG Chao, CUI Yu-jun, HUANG Mao-song, et al. Damage model for unsaturated structural loess under cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 805–810. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.04.021
    [11]
    蒋明镜, 卢国文, 李涛. 基于胶结破损机理的非饱和结构性黄土本构模型[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(3): 243–251. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202003004.htm

    JIANG Ming-jing, LU Guo-wen, LI Tao. Three-dimensional constitutive model of unsaturated structural loess based on the mechanism of degradation evolution[J]. Journal of Tianjin University (Science and Technology), 2020, 53(3): 243–251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX202003004.htm
    [12]
    李潇旋, 李涛, 李舰, 等. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153–1160, 1168. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004005.htm

    LI Xiao-xuan, LI Tao, LI Jian, et al. An elastoplastic two-surface model for unsaturated structural clays under cyclic loading[J]. Rock and Soil Mechanics, 2020, 41(4): 1153–1160, 1168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004005.htm
    [13]
    黄茂松, 杨超, 崔玉军. 循环荷载下非饱和结构性土的边界面模型[J]. 岩土工程学报, 2009, 31(6): 817–823. doi: 10.3321/j.issn:1000-4548.2009.06.001

    HUANG Mao-song, YANG Chao, CUI Yu-jun. Elasto-plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817–823. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.001
    [14]
    姚志华, 连杰, 陈正汉, 等. 考虑细观结构演化的非饱和Q3原状黄土弹塑性本构模型[J]. 岩土力学, 2018, 39(5): 1553–1563. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805002.htm

    YAO Zhi-hua, LIAN Jie, CHEN Zheng-han, et al. An elastic-plastic constitutive model for unsaturated Q3 undisturbed loess considering meso-structured evolution[J]. Rock and Soil Mechanics, 2018, 39(5): 1553–1563. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805002.htm
    [15]
    LIU M D, CARTER J P. A structured Cam Clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313–1332. doi: 10.1139/t02-069
    [16]
    ANAGNOSTOPOULOS A G, KALTEZIOTIS N, TSIAMBAOS G K, et al. Geotechnical properties of the Corinth canal marls[J]. Geotechnical & Geological Engineering, 1991, 9(1): 1–26. doi: 10.1007/BF00880981
    [17]
    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329–378. doi: 10.1680/geot.1990.40.3.329
    [18]
    SUEBSUK J, HORPIBULSUK S, LIU M D. Modified Structured Cam Clay: a generalised critical state model for destructured, naturally structured and artificially structured clays[J]. Computers and Geotechnics, 2010, 37(7/8): 956–968. https://www.sciencedirect.com/science/article/pii/S0266352X10000996
    [19]
    HORPIBULSUK S, LIU M D, LIYANAPATHIRANA D S, et al. Behaviour of cemented clay simulated via the theoretical framework of the Structured Cam Clay model[J]. Computers and Geotechnics, 2010, 37(1/2): 1–9. https://www.sciencedirect.com/science/article/pii/S0266352X09001141
    [20]
    HAERI S M, GARAKANI A A, AND KHORSHIDI M. Collapse potential and variation of the water content in undisturbed loessial samples under K0 condition and controlled matric suction[C]//Proc 9th Int Congress on Civil Engineering. Millpress, 2012.
    [21]
    方祥位, 陈正汉, 申春妮, 等. 非饱和原状Q2黄土屈服硬化过程的细观结构演化分析[J]. 岩土工程学报, 2008, 30(7): 1044–1050. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200807019.htm

    FANG Xiang-wei, CHEN Zheng-han, SHEN Chun-ni, et al. Analysis on Meso-structure evolution of unsaturated natural Q2 loess during yield hardening[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 1044–1050. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200807019.htm

Catalog

    Article views (103) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return