• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FANG Huo-lang, SHEN Yang, ZHENG Hao, ZENG Ze-bin. Three-dimensional multi-mechanism bounding surface model for sands[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1189-1195. DOI: 10.11779/CJGE201707004
Citation: FANG Huo-lang, SHEN Yang, ZHENG Hao, ZENG Ze-bin. Three-dimensional multi-mechanism bounding surface model for sands[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1189-1195. DOI: 10.11779/CJGE201707004

Three-dimensional multi-mechanism bounding surface model for sands

More Information
  • Published Date: July 24, 2017
  • Within the multi-mechanism framework, a novel constitutive model for sands is proposed based on the critical state and bounding surface plasticity theories. The model assumes that the macroscopic deformation behavior of sands can be obtained by summation of the contributions from a macroscopic volumetric mechanism and a set of virtual one-dimensional microscopic shear mechanisms with random orientations in space. Each microscopic shear mechanism describes a shear deformation and a volumetric deformation due to dilatancy, which are modeled by both the microscopic shear stress-strain relationship based on the macroscopic bounding surface plasticity theory and the microscopic stress-dilatancy relationship, respectively. Both the strength criterion and the stress-dilatancy relationship introduce a state parameter for compatibility with the critical state theory. The correlations between some microscopic and macroscopic model parameters are formulated for the triaxial compression under constant confining stress. The model contains thirteen parameters and most of them are defined by soil parameters with the clear physical meanings. The systematic comparisons between the model simulations and the test data indicate that the proposed model has an excellent capability in predicting sand responses under the drained and undrained monotonic loadings, and the rotation of the principal stress axes without using additional parameters.
  • [1]
    DAFALIAS Y F. Bounding surface plasticity: I mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, ASCE, 1986, 112(12): 966-987.
    [2]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Geotechnique, 1985, 35(2): 99-112.
    [3]
    MANZARI M T, DAFALIAS Y F. A critical state two-surface plasticity model for sands[J]. Géotechnique, 1997, 47(2): 255-272.
    [4]
    WAN R G, GUO P J. A simple constitutive model for granular soils: Modified stress-dilatancy approach[J]. Computers and Geotechnics, 1998, 22(2): 109-133.
    [5]
    LI X S, DAFALIAS Y, WANG Z L. State-dependantdilatancy in critical-state constitutive modelling of sand[J]. Canadlan Geotechnical Journal, 1999, 36(4): 599-611.
    [6]
    WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics-asce, 1990, 116(5): 983-1001.
    [7]
    GAJOA, WOOD D M. Severn-Trent sand: a kinematic- hardening constitutive model: the q - p formulation[J]. Géotechnique, 1999, 49(5): 595-614.
    [8]
    蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128. (CAI Zheng-yin, LI Xiang-song. Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. (in Chinese))
    [9]
    姚仰平, 余亚妮. 基于统一硬化参数的砂土临界状态本构模型[J]. 岩土工程学报, 2011, 33(11): 1827-1832. (YAO Yang-ping, YU Ya-ni. Extended critical state constitutive model for sand based on unified hardening parameter[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1827-1832. (in Chinese))
    [10]
    张卫华, 赵成刚, 傅 方. 饱和砂土相变状态边界面本构模型[J]. 岩土工程学报, 2013, 13(5): 930-939. (ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based onphase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 13(5): 930-939. (in Chinese))
    [11]
    周恩全, 王志华, 陈国兴, 等. 饱和砂土液化后流体本构模型研究[J]. 岩土工程学报, 2015, 37(1): 112-118. (ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, et al. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. (in Chinese))
    [12]
    王 刚, 张建民, 魏 星, 等. 剪胀性砂土地震后流滑的机理和模拟[J]. 岩土工程学报, 2015, 37(6): 988-995. (WANG Gang, ZHANG Jian-min, WEI Xing, et al. Mechanism and modeling of post-earthquake flow deformation of dilative sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 988-995. (in Chinese))
    [13]
    IAI S, MATSUNAGA Y, KAMEOKA T. Strain space plasticity model for cyclic mobility[J]. Soils and Foundations, 1992, 32(2): 1-15.
    [14]
    丰土根, 刘汉龙, 高玉峰, 等. 砂土多机构边界面塑性模型初探[J]. 岩土工程学报, 2002, 24(3): 382-385. (FENG Tu-gen, LIU Han-long, GAO Yu-feng, et al. Multiple mechanism boundary surface plasticity model of sand[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 382-385. (in Chinese))
    [15]
    FANG H L. A state-dependent multi-mechanism model for sands[J]. Géotechnique, 2003, 53(4): 407-420.
    [16]
    童朝霞, 张建民, 张 嘎. 考虑应力主轴循环旋转效应的砂土弹塑性本构模型[J]. 岩石力学与工程学报, 2009, 28(9): 1918-1927. (TONG Zhao-xia, ZHANG Jian-min, ZHANG Ga. An elastoplastic constitutive model of sands considering cyclic rotation of principal stress axes[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1918-1927. (in Chinese))
    [17]
    ZHANG J M, WANG G. Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm[J]. ActaGeotech, 2012, 7(2): 69-113.
    [18]
    WANG R, ZHANG J, WANG G. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59: 54-66.
    [19]
    TAYLOR G I. Plastic strain in metals[J]. Journal of the Inst. Metals, 1938, 62: 307-324.
    [20]
    BAZANT Z P, OH B H. Microplane model for progressive fracture of concrete and rock[J]. Journal of Engineering Mechanics, ASCE, 1985, 111(4): 559-582.
    [21]
    LI X S. A sand model with state-dependent dilatancy[J]. Géotechnique, 2002, 52(3): 173-186.
    [22]
    MATSUOKA H, YAO Y P, SUN D A. The Cam-clay models revised by the SMP criterion[J]. Soils and Foundations, 1999, 39(1): 81-95.
    [23]
    PRADHAN T B S, TATSUOKA F, SATO Y. Experimental stress-dilatancy relations of sand subjected to cyclic loading[J]. Soils and Foundations, 1989, 29(1): 45-64.
    [24]
    VERDOGU R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
    [25]
    MIURA K, MIURA S, TOKI S. Deformation behaviour of anisotropic sand under principal axis rotation[J]. Soils and Foundations, 1986, 26(1): 36-52.

Catalog

    Article views (391) PDF downloads (226) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return