• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Chunhua, HUANG Jiangdong, LI Xiaozhou, XIE Haijian, CHEN Yun. One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 541-550. DOI: 10.11779/CJGE20211427
Citation: ZHANG Chunhua, HUANG Jiangdong, LI Xiaozhou, XIE Haijian, CHEN Yun. One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 541-550. DOI: 10.11779/CJGE20211427

One-dimensional analytical model for contaminant transport through CCL under thermal diffusion and its application

More Information
  • Received Date: December 01, 2021
  • Available Online: March 15, 2023
  • A one-dimensional analytical model as well as the analytical solution for the contaminant transport in compacted clay liner (CCL) is proposed. The dimensionless design curves show that the advection has significant effects on the contaminant transport in CCL. However, with the increases of thermal diffusion, the effects of the advection will decrease. The results of parameter sensitive analysis show when the leachate head reaches 3 m, the 10-year bottom concentration and flux increase by the factors of 3.5~4.9 and 5.9~15.1, respectively, compared with those without the advection. When the thermal diffusion is great enough (M=-5), the bottom concentration and flux increase by the factors of 2.6 and 3.5, respectively, compared with those without the thermal diffusion. The effects of the temperature on the permeability coefficient of CCL should be considered in the design of landfill clay liners. A simplified method for determination of the thickness of the landfill liner is proposed. The simplified method is used to design the liner system at the Jiangcungou Landfill site in Xi 'an. When considering the chloride (Cl-) and arsenic (As) as the index contaminants, the breakthrough time will be longer than 50 years in the case with the thickness of CCL larger than 11.16 m and 1.75 m, respectively.
  • [1]
    陈云敏. 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36(1): 1-46. doi: 10.11779/CJGE201401001

    CHEN Yunmin. A fundamental theory of environmental geotechnics and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 1-46. (in Chinese) doi: 10.11779/CJGE201401001
    [2]
    LEI M F, LIN D Y, LIU J W, et al. Modified chloride diffusion model for concrete under the coupling effect of mechanical load and chloride salt environment[J]. AIP Advances, 2018, 8(3): 035029. doi: 10.1063/1.5027540
    [3]
    YU C, LIU J F, MA J J, et al. Study on transport and transformation of contaminant through layered soil with large deformation[J]. Environmental Science and Pollution Research, 2018, 25(13): 12764-12779. doi: 10.1007/s11356-018-1325-7
    [4]
    PU H F, FOX P J, SHACKELFORD C D. Assessment of consolidation-induced contaminant transport for compacted clay liner systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(3): 04015091. doi: 10.1061/(ASCE)GT.1943-5606.0001426
    [5]
    田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. doi: 10.11779/CJGE202202009

    TIAN Gailei, ZHANG Zhihong. The coupled model of contaminant diffusion, osmosis and consolidation in soil considering thermal effect[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. (in Chinese) doi: 10.11779/CJGE202202009
    [6]
    YAN H X, XIE H J, WU J W, et al. Analytical model for transient coupled consolidation and contaminant transport in landfill liner system[J]. Computers and Geotechnics, 2021, 138: 104345. doi: 10.1016/j.compgeo.2021.104345
    [7]
    YU C, WANG H, FANG D F, et al. Semi-analytical solution to one-dimensional advective-dispersive-reactive transport equation using homotopy analysis method[J]. Journal of Hydrology, 2018, 565: 422-428. doi: 10.1016/j.jhydrol.2018.08.041
    [8]
    STOPPIELLO M G, LOFRANO G, CAROTENUTO M, et al. A comparative assessment of analytical fate and transport models of organic contaminants in unsaturated soils[J]. Sustainability, 2020, 12(7): 2949. doi: 10.3390/su12072949
    [9]
    DING X H, FENG S J, ZHENG Q T, et al. A two-dimensional analytical model for organic contaminants transport in a transition layer-cutoff wall-aquifer system[J]. Computers and Geotechnics, 2020, 128: 103816. doi: 10.1016/j.compgeo.2020.103816
    [10]
    谢海建. 成层介质污染物的运移机理及衬垫系统防污性能研究[D]. 杭州: 浙江大学, 2008.

    XIE Haijian. A Study on Contaminant Transport in Layered Media and the Performance of Landfill Liner Systems[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    [11]
    陈云敏, 谢海建, 柯瀚, 等. 层状土中污染物的一维扩散解析解[J]. 岩土工程学报, 2006, 28(4): 521-524. doi: 10.3321/j.issn:1000-4548.2006.04.018

    CHEN Yunmin, XIE Haijian, KE Han, et al. Analytical solution of contaminant diffusion through multi-layered soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 521-524. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.04.018
    [12]
    张文杰, 赵培, 贾文强. 一维对流-扩散试验各种边界条件及其统一形式解析解[J]. 岩土力学, 2015, 36(10): 2759-2764. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510003.htm

    ZHANG Wenjie, ZHAO Pei, JIA Wenqiang. Boundary conditions of one-dimensional convection- diffusion column tests and unified analytical solution[J]. Rock and Soil Mechanics, 2015, 36(10): 2759-2764. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201510003.htm
    [13]
    HARRIS A P F, MCDERMOTT C I, KOLDITZ O, et al. Modelling groundwater flow changes due to thermal effects of radioactive waste disposal at a hypothetical repository site near Sellafield, UK[J]. Environmental Earth Sciences, 2015, 74(2): 1589-1602. doi: 10.1007/s12665-015-4156-6
    [14]
    PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120: 448-458. doi: 10.1016/j.wasman.2020.10.004
    [15]
    XIE H J, ZHANG C H, SEDIGHI M, et al. An analytical model for diffusion of chemicals under thermal effects in semi-infinite porous media[J]. Computers and Geotechnics, 2015, 69: 329-337. doi: 10.1016/j.compgeo.2015.06.012
    [16]
    THOMAS H R, SEDIGHI M, VARDON P J. Diffusive reactive transport of multicomponent chemicals under coupled thermal, hydraulic, chemical and mechanical conditions[J]. Geotechnical and Geological Engineering, 2012, 30(4): 841-857. doi: 10.1007/s10706-012-9502-9
    [17]
    SEDIGHI M, THOMAS H, VARDON P. Modelling thermal impacts on reactive transport processes related to multicomponent chemicals in compacted clays[C]//2nd International Symposium on Computational Geomechanics(ComGeo Ⅱ). Dubrovnik, 2011: 538-546.
    [18]
    THOMAS H R, SEDIGHI M. Thermal Effects on Chemical Diffusion in Multicomponent Ionic Systems[M]//Engineering Geology for Society and Territory-Volume 6. Cham: Springer International Publishing, 2014: 525-528.
    [19]
    FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 590-601. doi: 10.1061/(ASCE)1090-0241(2002)128:7(590)
    [20]
    CARSLAW H S, JAEGER J C. Conduction of Heat in Solids[M]. 2d ed. Oxford: Clarendon Press, 1959.
    [21]
    张春华, 吴家葳, 陈赟, 等. 基于污染物击穿时间的填埋场复合衬垫厚度简化设计方法[J]. 岩土工程学报, 2020, 42(10): 1841-1848. doi: 10.11779/CJGE202010009

    ZHANG Chunhua, WU Jiawei, CHEN Yun, et al. Simplified method for determination of thickness of composite liners based on contaminant breakthrough time[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1841-1848. (in Chinese) doi: 10.11779/CJGE202010009
    [22]
    XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836. doi: 10.1007/s11356-014-3565-5
    [23]
    HAO Z S, BARLAZ M A, DUCOSTE J J. Finite-element modeling of landfills to estimate heat generation, transport, and accumulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 04020134.
    [24]
    PARK S, YOON S, KWON S, et al. Temperature effect on the thermal and hydraulic conductivity of Korean bentonite buffer material[J]. Progress in Nuclear Energy, 2021, 137: 103759.
    [25]
    FOX P M, TINNACHER R M, CHESHIRE M C, et al. Effects of bentonite heating on U(VI)adsorption[J]. Applied Geochemistry, 2019, 109: 104392.
    [26]
    ZHAN T L T, GUAN C, XIE H J, et al. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation[J]. Science of the Total Environment, 2014, 470/471: 290-298.
    [27]
    何晓晓. 江村沟垃圾渗滤液尾水的深度处理研究[D]. 西安: 长安大学, 2013.

    HE Xiaoxiao. Deep Research on the Tail Water of Leachate from Jiang Cungou MSW Landfill[D]. Xi'an: Changan University, 2013. (in Chinese)
    [28]
    陈云敏, 刘晓成, 徐文杰, 等. 填埋生活垃圾稳定化特征与可开采性分析: 以中国第一代卫生填埋场为例[J]. 中国科学: 技术科学, 2019, 49(2): 199-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201902010.htm

    CHEN Yunmin, LIU Xiaocheng, XU Wenjie, et al. Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste: case of a typical landfill in China[J]. Scientia Sinica(Technologica), 2019, 49(2): 199-211. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201902010.htm
    [29]
    张春华. 填埋场复合衬垫污染物热扩散运移规律及其优化设计方法[D]. 杭州: 浙江大学, 2018.

    ZHANG Chunhua. Mechanisms for Contaminant Transport in Landfill Composite Liners under Thermal Effect and Its Optimization Design Method[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [30]
    ROWE R. Short-and long-term leakage through composite liners: The 7th Arthur Casagrande Lecture 1[J]. Canadian Geotechnical Journal, 2012, 49(2): 141-169.
  • Related Articles

    [1]WANG Mingyuan, SUN Jizhu, WANG Yong, YANG Yang. Bounding surface plastic p-y model for a single laterally loaded pile in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 85-90. DOI: 10.11779/CJGE2023S20006
    [2]WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229
    [3]WANG Chun-ying, CAI Guo-qing, HAN Bo-wen, SU Yan-lin, LI Meng-zi, LI Jian. A structural bounding surface constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 148-153. DOI: 10.11779/CJGE2022S1027
    [4]FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014
    [5]FANG Huo-lang, CAI Yun-hui, WANG Wen-jie. State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. DOI: 10.11779/CJGE201812002
    [6]FANG Huo-lang, SHEN Yang, ZHENG Hao, ZENG Ze-bin. Three-dimensional multi-mechanism bounding surface model for sands[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1189-1195. DOI: 10.11779/CJGE201707004
    [7]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [8]An anisotropic bounding surface model for structured soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [9]LIU Fangcheng, SHANG Shouping, WANG Haidong, JIANG Longmin. Damping ratio-based bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 851-858.
    [10]HUANG Maosong, YANG Chao, CUI Yujun. Elasto-plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817-823.
  • Cited by

    Periodical cited type(5)

    1. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    2. 廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
    4. 冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
    5. 庄心善,潘睿捷,夏顺磊. 循环荷载作用下NaCl溶液对黏土动力特性影响及微观机理分析. 河北科技大学学报. 2023(04): 403-410 .

    Other cited types(3)

Catalog

    Article views (269) PDF downloads (53) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return