• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001
Citation: LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001

Advances in studies on pore structure of highly compacted bentonite

More Information
  • Received Date: May 10, 2021
  • Available Online: September 22, 2022
  • Based on the detailed description of pore structure of highly compacted bentonite and approaches used to determine delimiting diameter, the evolution of pore structure under the near-field environment in repository and its influence on hydraulic behavior of the bentonite are summaried. The results show that the pore structure is made up of three classes of pores, including inter-layer, inter-particle and inter-aggregate pores. When describing the constitutive model for bentonite, the pore structure is always simplified as dual pore structure consisting of macro-and micro-pores. The approaches used to determine the delimiting diameter have not reached a consensus. The evolution of pore structure is affected by the near-field conditions of deep geological repository, including temperature, seepage, stress and chemical fields. However, less studies have considered the influences of multi-field coupling on the evolution. The pore ratio and pore-size distribution cannot accurately reflect the actual pore structure, especially the pore shape and spatial distribution. Hence, there are some limitations when the pore ratio and pore-size distribution are used to explore the relationship between the pore structure and the hydraulic behavior of the bentonite. Based on the above, the following aspects should be deeply studied in the future: the optimal approach used to determine the delimiting diameter for describing the constitutive model, the evolution law of pore structure under the coupled T-H-M-C conditions, the scientific and reasonable index system reflecting the actual pore structure, and the prediction model for hydraulic characteristics based on the above index system.
  • [1]
    崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842–847. doi: 10.3321/j.issn:1000-6915.2006.04.019

    CUI Yu-jun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842–847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019
    [2]
    ROMERO E, GENS A, LLORET A. Water permeability, water retention and microstructure of unsaturated compacted Boom clay[J]. Engineering Geology, 1999, 54(1/2): 117–127.
    [3]
    DELAGE P. Microstructure features in the behaviour of engineered barriers for nuclear waste disposal[C]// Experimental Unsaturated Soil Mechanics, 2007, Berlin.
    [4]
    叶为民, 赖小玲, 刘毅, 等. 高庙子膨润土微观结构时效性试验研究[J]. 岩土工程学报, 2013, 35(12): 2255–2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm

    YE Wei-min, LAI Xiao-ling, LIU Yi, et al. Experimental study on ageing effects on microstructure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2255–2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm
    [5]
    LAMBE T W. The structure of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1958, 84(SM2): 1–34.
    [6]
    AYLMORE L A G, QUIRK J P. Domain or turbostratic structure of clays[J]. Nature, 1960, 187(4742): 1046–1048. doi: 10.1038/1871046a0
    [7]
    OLSEN H W. Hydraulic flow through saturated clays[J]. Clays and Clay Minerals, 1960, 9(1): 131–161. doi: 10.1346/CCMN.1960.0090108
    [8]
    DIAMOND S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7–23. doi: 10.1346/CCMN.1970.0180103
    [9]
    AHMED S, LOVELL C W, DIAMOND S. Pore sizes and strength of compacted clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(4): 407–425. doi: 10.1061/AJGEB6.0000035
    [10]
    PUSCH R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(2): 153–157. doi: 10.13182/NT79-A32305
    [11]
    PUSCH R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19: 381–387. doi: 10.1139/t82-041
    [12]
    YONG R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance[J]. Engineering Geology, 1999, 54(1): 83–91.
    [13]
    ROMERO E, SIMMS P H. Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J]. Geotechnical and Geological Engineering, 2008, 26(6): 705–727. doi: 10.1007/s10706-008-9204-5
    [14]
    SUN H, MAŠÍN D, NAJSER J, et al. Bentonite microstructure and saturation evolution in wetting-drying cycles evaluated using ESEM, MIP and WRC measurements[J]. Géotechnique. 2019, 69(8): 713–726. doi: 10.1680/jgeot.17.P.253
    [15]
    TOMIOKA S, KOZAKI T, TAKAMATSU H, et al. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied Clay Science. 2010, 47(1/2): 65–71.
    [16]
    DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21–35. doi: 10.1139/t84-003
    [17]
    LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted "FEBEX" bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8-14): 701–715. doi: 10.1016/j.pce.2006.03.002
    [18]
    AGUS S S. An Experimental Study on Hydro-Mechanical Characteristics of Compacted Bentonite-Sand Mixtures[D]. Weimar, Germany: Bauhaus-University Weimar, 2005.
    [19]
    ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1): 173–183.
    [20]
    ROMERO E, DELLA VECCHIA G, JOMMI C. An insight into the water retention properties of compacted clayey soils[J]. Géotechnique, 2011, 61(4): 313–328. doi: 10.1680/geot.2011.61.4.313
    [21]
    YUAN S, LIU X, ROMERO E, et al. Discussion on the separation of macropores and micropores in a compacted expansive clay[J]. Géotechnique, 2020, 10(3): 454–460. doi: 10.1680/jgele.20.00056
    [22]
    刘伟, 梁栋, 杨仲田, 等. 高温作用对膨润土孔隙结构的影响[J]. 化工新型材料, 2018, 46(增刊1): 43–46. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm

    LIU Wei, LIANG Dong, YANG Zhong-tian, et al. Influence of high temperature on the pore structure of bentonite[J]. New Chemical Materials, 2018, 46(S1): 43–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm
    [23]
    徐颖, 邓利蓉, 芦玉峰, 等. 热处理对柯尔碱膨润土微观结构和物化性能的影响[J]. 岩矿测试, 2019, 38(3): 280–287. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm

    XU Ying, DENG Li-rong, LU Yu-feng, et al. Effect of thermal treatment on the composition and physicochemical properties of bentonite from the Kerjian Region, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 280–287. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm
    [24]
    COUTURE R A. Steam rapidly reduces the swelling capacity of bentonite[J]. Nature, 1985, 318(6041): 50–52. doi: 10.1038/318050a0
    [25]
    PUSCH R, BLUEMLING P, JOHNSON L. Performance of strongly compressed MX-80 pellets under repository-like conditions[J]. Applied Clay Science, 2003, 23(1/2/3/4): 239–244.
    [26]
    INOUE A, WATANABE T, KOHYAMA N, et al. Characterization of illitization of smectite in bentonite beds at kinnekulle, Sweden[J]. Clays and Clay Minerals, 1990, 38(3): 241–249. doi: 10.1346/CCMN.1990.0380302
    [27]
    CUI Y J, LOISEAU C, DELAGE P. Microstructure changes of a confined swelling soil due to suction controlled hydration[J]. Proceedings of the 3nd International Conference on Unsaturated Soils, 2002, 2: 593–598.
    [28]
    YE W M, WANG Y, WANG Q, et al. Stress-dependent temperature effect on the swelling behavior of compacted GMZ bentonite[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3897–3907. doi: 10.1007/s10064-020-01801-2
    [29]
    WANG Q, CUI Y, MINH TANG A, et al. Time- and density-dependent microstructure features of compacted bentonite[J]. Soils and Foundations, 2014, 54(4): 657–666. doi: 10.1016/j.sandf.2014.06.021
    [30]
    NOWAMOOZ H, MASROURI F. Influence of suction cycles on the soil fabric of compacted swelling soil[J]. Comptes Rendus Geoscience, 2010, 342(12): 901–910. doi: 10.1016/j.crte.2010.10.003
    [31]
    LLORET A, VILLAR M V, SÀNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27–40. doi: 10.1680/geot.2003.53.1.27
    [32]
    SUDDEEPONG A, CHAI J, SHEN S, et al. Deformation behaviour of clay under repeated one-dimensional unloading–reloading[J]. Canadian Geotechnical Journal, 2015, 52(8): 1035–1044. doi: 10.1139/cgj-2014-0216
    [33]
    贺勇. 化-水-力耦合作用下高压实GMZ膨润土体变特征研究[D]. 上海: 同济大学, 2017.

    HE Yong. Volume Change Behavior of Highly Compacted GMZ Bentonite under Chemo-Hydro-Mechanical Conditions[D]. Shanghai: Tongji University, 2017. (In Chinese)
    [34]
    MATA C, ROMERO E, LEDESMA A. Hydro-chemical effects on water retention in bentonite-sand mixtures[C]// Proceedings 3rd International Conference on Unsaturated Soils, Recife, 2002, Brazil.
    [35]
    MOKNI N. Deformation and Flow Driven by Osmotic Processes in Porous Materials[D]. Barcelona: Polytechnic University of Catalonia, 2011.
    [36]
    LIU L, CHEN Y, YE W, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH–anions[J]. Applied Clay Science, 2018, 161: 334–342. doi: 10.1016/j.clay.2018.04.023
    [37]
    BAO C, JIAXING G, HUIXIN Z. Alteration of compacted GMZ bentonite by infiltration of alkaline solution[J]. Clay Minerals, 2016, 51(2): 237–247. doi: 10.1180/claymin.2016.051.2.10
    [38]
    SUN Z, CHEN Y, CUI Y, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: The Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66–74. doi: 10.1016/j.enggeo.2018.08.002
    [39]
    刘樟荣, 叶为民, 崔玉军, 等. 基于微孔填充和毛细管凝聚理论的持水曲线模型[J]. 岩土力学, 2021, 42(6): 1549–1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm

    LIU Zhang-rong, YE Wei-min, CUI Yu-jun, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Rock and Soil Mechanics, 2021, 42(6): 1549–1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm
    [40]
    GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105–112. doi: 10.1680/geot.2003.53.1.105
    [41]
    费锁柱, 谭晓慧, 董小乐, 等. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691–1699. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm

    FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691–1699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm
    [42]
    YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621–2630. doi: 10.1007/s12665-014-3169-x
    [43]
    WEN Z. Physical property of China's buffer material for high-level radioactive waste repositories[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 794–800.
    [44]
    MITACHI T. Mechanical behavior of bentonite-sand mixtures as buffer materials[J]. Soils and Foundations, 2008, 48(3): 363–374. doi: 10.3208/sandf.48.363
    [45]
    RAO S M, K. R. Hydro-mechanical characterization of Barmer 1 bentonite from Rajasthan, India[J]. Nuclear Engineering and Design, 2013, 265: 330–340. doi: 10.1016/j.nucengdes.2013.09.012
    [46]
    WANG Q, MINH TANG A, CUI Y, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture[J]. Soils and Foundations, 2013, 53(2): 232–245. doi: 10.1016/j.sandf.2013.02.004
    [47]
    YUAN S Y, LIU X F, BUZZI O. Effects of soil structure on the permeability of saturated Maryland clay[J]. Géotechnique, 2019, 69(1): 72–78. doi: 10.1680/jgeot.17.P.120
    [48]
    宋帅兵. 高庙子膨润土孔隙结构多尺度特征及其渗流特性研究[D]. 徐州: 中国矿业大学, 2020.

    SONG Shuai-bing. Multi-scale Characteristics of Pore Structure and Seepage Characteristics of GMZ Bentonite[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
    [49]
    叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29–36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm

    YE Wei-min, LIU Zhang-rong, CUI Yu-jun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering. 2020, 42(1): 29–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm
    [50]
    KOMINE H, OGATA N. Predicting swelling characteristics of bentonites[J]. Journal of Geotechnical and Geo- environmental Engineering, 2004, 130(8): 818–829. doi: 10.1061/(ASCE)1090-0241(2004)130:8(818)
    [51]
    TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437–450. doi: 10.1139/t03-096
    [52]
    SUN H Q. Prediction of swelling pressure of compacted bentonite with respect to void ratio based on diffuse double layer theory[C]// Proceedings of the 1st GeoMEast International Congress and Exhibition, 2017, Giza.
    [53]
    SOUZA R F C, PEJON O J. Pore size distribution and swelling behavior of compacted bentonite/claystone and bentonite/sand mixtures[J]. Engineering Geology, 2020, 275: 105738. doi: 10.1016/j.enggeo.2020.105738
  • Related Articles

    [1]WANG Mingyuan, SUN Jizhu, WANG Yong, YANG Yang. Bounding surface plastic p-y model for a single laterally loaded pile in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 85-90. DOI: 10.11779/CJGE2023S20006
    [2]WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229
    [3]WANG Chun-ying, CAI Guo-qing, HAN Bo-wen, SU Yan-lin, LI Meng-zi, LI Jian. A structural bounding surface constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 148-153. DOI: 10.11779/CJGE2022S1027
    [4]FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014
    [5]FANG Huo-lang, CAI Yun-hui, WANG Wen-jie. State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. DOI: 10.11779/CJGE201812002
    [6]FANG Huo-lang, SHEN Yang, ZHENG Hao, ZENG Ze-bin. Three-dimensional multi-mechanism bounding surface model for sands[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1189-1195. DOI: 10.11779/CJGE201707004
    [7]ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939.
    [8]An anisotropic bounding surface model for structured soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [9]LIU Fangcheng, SHANG Shouping, WANG Haidong, JIANG Longmin. Damping ratio-based bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 851-858.
    [10]HUANG Maosong, YANG Chao, CUI Yujun. Elasto-plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817-823.
  • Cited by

    Periodical cited type(5)

    1. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    2. 廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 . 本站查看
    3. 薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
    4. 冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
    5. 庄心善,潘睿捷,夏顺磊. 循环荷载作用下NaCl溶液对黏土动力特性影响及微观机理分析. 河北科技大学学报. 2023(04): 403-410 .

    Other cited types(3)

Catalog

    Article views (380) PDF downloads (413) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return