Citation: | LI Kun-peng, CHEN Yong-gui, YE Wei-min, CUI Yu-jun. Advances in studies on pore structure of highly compacted bentonite[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 399-408. DOI: 10.11779/CJGE202203001 |
[1] |
崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842–847. doi: 10.3321/j.issn:1000-6915.2006.04.019
CUI Yu-jun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842–847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019
|
[2] |
ROMERO E, GENS A, LLORET A. Water permeability, water retention and microstructure of unsaturated compacted Boom clay[J]. Engineering Geology, 1999, 54(1/2): 117–127.
|
[3] |
DELAGE P. Microstructure features in the behaviour of engineered barriers for nuclear waste disposal[C]// Experimental Unsaturated Soil Mechanics, 2007, Berlin.
|
[4] |
叶为民, 赖小玲, 刘毅, 等. 高庙子膨润土微观结构时效性试验研究[J]. 岩土工程学报, 2013, 35(12): 2255–2261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm
YE Wei-min, LAI Xiao-ling, LIU Yi, et al. Experimental study on ageing effects on microstructure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2255–2261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201312020.htm
|
[5] |
LAMBE T W. The structure of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1958, 84(SM2): 1–34.
|
[6] |
AYLMORE L A G, QUIRK J P. Domain or turbostratic structure of clays[J]. Nature, 1960, 187(4742): 1046–1048. doi: 10.1038/1871046a0
|
[7] |
OLSEN H W. Hydraulic flow through saturated clays[J]. Clays and Clay Minerals, 1960, 9(1): 131–161. doi: 10.1346/CCMN.1960.0090108
|
[8] |
DIAMOND S. Pore size distributions in clays[J]. Clays and Clay Minerals, 1970, 18(1): 7–23. doi: 10.1346/CCMN.1970.0180103
|
[9] |
AHMED S, LOVELL C W, DIAMOND S. Pore sizes and strength of compacted clay[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(4): 407–425. doi: 10.1061/AJGEB6.0000035
|
[10] |
PUSCH R. Highly compacted sodium bentonite for isolating rock-deposited radioactive waste products[J]. Nuclear Technology, 1979, 45(2): 153–157. doi: 10.13182/NT79-A32305
|
[11] |
PUSCH R. Mineral-water interactions and their influence on the physical behavior of highly compacted Na bentonite[J]. Canadian Geotechnical Journal, 1982, 19: 381–387. doi: 10.1139/t82-041
|
[12] |
YONG R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance[J]. Engineering Geology, 1999, 54(1): 83–91.
|
[13] |
ROMERO E, SIMMS P H. Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J]. Geotechnical and Geological Engineering, 2008, 26(6): 705–727. doi: 10.1007/s10706-008-9204-5
|
[14] |
SUN H, MAŠÍN D, NAJSER J, et al. Bentonite microstructure and saturation evolution in wetting-drying cycles evaluated using ESEM, MIP and WRC measurements[J]. Géotechnique. 2019, 69(8): 713–726. doi: 10.1680/jgeot.17.P.253
|
[15] |
TOMIOKA S, KOZAKI T, TAKAMATSU H, et al. Analysis of microstructural images of dry and water-saturated compacted bentonite samples observed with X-ray micro CT[J]. Applied Clay Science. 2010, 47(1/2): 65–71.
|
[16] |
DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21–35. doi: 10.1139/t84-003
|
[17] |
LLORET A, VILLAR M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted "FEBEX" bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8-14): 701–715. doi: 10.1016/j.pce.2006.03.002
|
[18] |
AGUS S S. An Experimental Study on Hydro-Mechanical Characteristics of Compacted Bentonite-Sand Mixtures[D]. Weimar, Germany: Bauhaus-University Weimar, 2005.
|
[19] |
ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1): 173–183.
|
[20] |
ROMERO E, DELLA VECCHIA G, JOMMI C. An insight into the water retention properties of compacted clayey soils[J]. Géotechnique, 2011, 61(4): 313–328. doi: 10.1680/geot.2011.61.4.313
|
[21] |
YUAN S, LIU X, ROMERO E, et al. Discussion on the separation of macropores and micropores in a compacted expansive clay[J]. Géotechnique, 2020, 10(3): 454–460. doi: 10.1680/jgele.20.00056
|
[22] |
刘伟, 梁栋, 杨仲田, 等. 高温作用对膨润土孔隙结构的影响[J]. 化工新型材料, 2018, 46(增刊1): 43–46. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm
LIU Wei, LIANG Dong, YANG Zhong-tian, et al. Influence of high temperature on the pore structure of bentonite[J]. New Chemical Materials, 2018, 46(S1): 43–46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC2018S1011.htm
|
[23] |
徐颖, 邓利蓉, 芦玉峰, 等. 热处理对柯尔碱膨润土微观结构和物化性能的影响[J]. 岩矿测试, 2019, 38(3): 280–287. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm
XU Ying, DENG Li-rong, LU Yu-feng, et al. Effect of thermal treatment on the composition and physicochemical properties of bentonite from the Kerjian Region, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 280–287. (In Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201903005.htm
|
[24] |
COUTURE R A. Steam rapidly reduces the swelling capacity of bentonite[J]. Nature, 1985, 318(6041): 50–52. doi: 10.1038/318050a0
|
[25] |
PUSCH R, BLUEMLING P, JOHNSON L. Performance of strongly compressed MX-80 pellets under repository-like conditions[J]. Applied Clay Science, 2003, 23(1/2/3/4): 239–244.
|
[26] |
INOUE A, WATANABE T, KOHYAMA N, et al. Characterization of illitization of smectite in bentonite beds at kinnekulle, Sweden[J]. Clays and Clay Minerals, 1990, 38(3): 241–249. doi: 10.1346/CCMN.1990.0380302
|
[27] |
CUI Y J, LOISEAU C, DELAGE P. Microstructure changes of a confined swelling soil due to suction controlled hydration[J]. Proceedings of the 3nd International Conference on Unsaturated Soils, 2002, 2: 593–598.
|
[28] |
YE W M, WANG Y, WANG Q, et al. Stress-dependent temperature effect on the swelling behavior of compacted GMZ bentonite[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3897–3907. doi: 10.1007/s10064-020-01801-2
|
[29] |
WANG Q, CUI Y, MINH TANG A, et al. Time- and density-dependent microstructure features of compacted bentonite[J]. Soils and Foundations, 2014, 54(4): 657–666. doi: 10.1016/j.sandf.2014.06.021
|
[30] |
NOWAMOOZ H, MASROURI F. Influence of suction cycles on the soil fabric of compacted swelling soil[J]. Comptes Rendus Geoscience, 2010, 342(12): 901–910. doi: 10.1016/j.crte.2010.10.003
|
[31] |
LLORET A, VILLAR M V, SÀNCHEZ M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J]. Géotechnique, 2003, 53(1): 27–40. doi: 10.1680/geot.2003.53.1.27
|
[32] |
SUDDEEPONG A, CHAI J, SHEN S, et al. Deformation behaviour of clay under repeated one-dimensional unloading–reloading[J]. Canadian Geotechnical Journal, 2015, 52(8): 1035–1044. doi: 10.1139/cgj-2014-0216
|
[33] |
贺勇. 化-水-力耦合作用下高压实GMZ膨润土体变特征研究[D]. 上海: 同济大学, 2017.
HE Yong. Volume Change Behavior of Highly Compacted GMZ Bentonite under Chemo-Hydro-Mechanical Conditions[D]. Shanghai: Tongji University, 2017. (In Chinese)
|
[34] |
MATA C, ROMERO E, LEDESMA A. Hydro-chemical effects on water retention in bentonite-sand mixtures[C]// Proceedings 3rd International Conference on Unsaturated Soils, Recife, 2002, Brazil.
|
[35] |
MOKNI N. Deformation and Flow Driven by Osmotic Processes in Porous Materials[D]. Barcelona: Polytechnic University of Catalonia, 2011.
|
[36] |
LIU L, CHEN Y, YE W, et al. Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH–anions[J]. Applied Clay Science, 2018, 161: 334–342. doi: 10.1016/j.clay.2018.04.023
|
[37] |
BAO C, JIAXING G, HUIXIN Z. Alteration of compacted GMZ bentonite by infiltration of alkaline solution[J]. Clay Minerals, 2016, 51(2): 237–247. doi: 10.1180/claymin.2016.051.2.10
|
[38] |
SUN Z, CHEN Y, CUI Y, et al. Effect of synthetic water and cement solutions on the swelling pressure of compacted Gaomiaozi(GMZ) bentonite: The Beishan site case, Gansu, China[J]. Engineering Geology, 2018, 244: 66–74. doi: 10.1016/j.enggeo.2018.08.002
|
[39] |
刘樟荣, 叶为民, 崔玉军, 等. 基于微孔填充和毛细管凝聚理论的持水曲线模型[J]. 岩土力学, 2021, 42(6): 1549–1556. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm
LIU Zhang-rong, YE Wei-min, CUI Yu-jun, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Rock and Soil Mechanics, 2021, 42(6): 1549–1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106008.htm
|
[40] |
GALLIPOLI D, WHEELER S J, KARSTUNEN M. Modelling the variation of degree of saturation in a deformable unsaturated soil[J]. Géotechnique, 2003, 53(1): 105–112. doi: 10.1680/geot.2003.53.1.105
|
[41] |
费锁柱, 谭晓慧, 董小乐, 等. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691–1699. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm
FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, et al. A micro-pore filling and capillary condensation theories based water retention model[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691–1699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202109019.htm
|
[42] |
YE W M, ZHANG F, CHEN B, et al. Effects of salt solutions on the hydro-mechanical behavior of compacted GMZ01 Bentonite[J]. Environmental Earth Sciences, 2014, 72(7): 2621–2630. doi: 10.1007/s12665-014-3169-x
|
[43] |
WEN Z. Physical property of China's buffer material for high-level radioactive waste repositories[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 794–800.
|
[44] |
MITACHI T. Mechanical behavior of bentonite-sand mixtures as buffer materials[J]. Soils and Foundations, 2008, 48(3): 363–374. doi: 10.3208/sandf.48.363
|
[45] |
RAO S M, K. R. Hydro-mechanical characterization of Barmer 1 bentonite from Rajasthan, India[J]. Nuclear Engineering and Design, 2013, 265: 330–340. doi: 10.1016/j.nucengdes.2013.09.012
|
[46] |
WANG Q, MINH TANG A, CUI Y, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture[J]. Soils and Foundations, 2013, 53(2): 232–245. doi: 10.1016/j.sandf.2013.02.004
|
[47] |
YUAN S Y, LIU X F, BUZZI O. Effects of soil structure on the permeability of saturated Maryland clay[J]. Géotechnique, 2019, 69(1): 72–78. doi: 10.1680/jgeot.17.P.120
|
[48] |
宋帅兵. 高庙子膨润土孔隙结构多尺度特征及其渗流特性研究[D]. 徐州: 中国矿业大学, 2020.
SONG Shuai-bing. Multi-scale Characteristics of Pore Structure and Seepage Characteristics of GMZ Bentonite[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese)
|
[49] |
叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29–36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm
YE Wei-min, LIU Zhang-rong, CUI Yu-jun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering. 2020, 42(1): 29–36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm
|
[50] |
KOMINE H, OGATA N. Predicting swelling characteristics of bentonites[J]. Journal of Geotechnical and Geo- environmental Engineering, 2004, 130(8): 818–829. doi: 10.1061/(ASCE)1090-0241(2004)130:8(818)
|
[51] |
TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Canadian Geotechnical Journal, 2004, 41(3): 437–450. doi: 10.1139/t03-096
|
[52] |
SUN H Q. Prediction of swelling pressure of compacted bentonite with respect to void ratio based on diffuse double layer theory[C]// Proceedings of the 1st GeoMEast International Congress and Exhibition, 2017, Giza.
|
[53] |
SOUZA R F C, PEJON O J. Pore size distribution and swelling behavior of compacted bentonite/claystone and bentonite/sand mixtures[J]. Engineering Geology, 2020, 275: 105738. doi: 10.1016/j.enggeo.2020.105738
|
[1] | WANG Mingyuan, SUN Jizhu, WANG Yong, YANG Yang. Bounding surface plastic p-y model for a single laterally loaded pile in sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 85-90. DOI: 10.11779/CJGE2023S20006 |
[2] | WANG Chenggui, SHU Shanzhi, XIAO Yang, LU Dechun, LIU Hanlong. Fractional-order bounding surface model considering breakage of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1162-1170. DOI: 10.11779/CJGE20220229 |
[3] | WANG Chun-ying, CAI Guo-qing, HAN Bo-wen, SU Yan-lin, LI Meng-zi, LI Jian. A structural bounding surface constitutive model for unsaturated soils and its verification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 148-153. DOI: 10.11779/CJGE2022S1027 |
[4] | FENG Shuang-xi, LEI Hua-yang. An elastoplastic dynamic constitutive model for saturated soft clay based on bounding surface theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 901-908. DOI: 10.11779/CJGE202105014 |
[5] | FANG Huo-lang, CAI Yun-hui, WANG Wen-jie. State-dependent 3D multi-mechanism bounding surface model for rockfills[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2164-2171. DOI: 10.11779/CJGE201812002 |
[6] | FANG Huo-lang, SHEN Yang, ZHENG Hao, ZENG Ze-bin. Three-dimensional multi-mechanism bounding surface model for sands[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1189-1195. DOI: 10.11779/CJGE201707004 |
[7] | ZHANG Wei-hua, ZHAO Cheng-gang, FU Fang. Bounding-surface constitutive model for saturated sands based on phase transformation state[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 930-939. |
[8] | An anisotropic bounding surface model for structured soft clay under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7). |
[9] | LIU Fangcheng, SHANG Shouping, WANG Haidong, JIANG Longmin. Damping ratio-based bounding surface model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 851-858. |
[10] | HUANG Maosong, YANG Chao, CUI Yujun. Elasto-plastic bounding surface model for unsaturated soils under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 817-823. |
1. |
冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
![]() | |
2. |
廖饶平,陈永贵,刘聪,叶为民,乌东北,王琼. 高压实膨润土与孔隙溶液物理作用机制研究进展. 岩土工程学报. 2024(12): 2465-2475 .
![]() | |
3. |
薄纯悦,刘春红,冷佳欣,陈聪. 含水率和干密度对三峡库区紫色土膨胀特性的影响. 土壤. 2024(06): 1381-1389 .
![]() | |
4. |
冯岩岩,杨婷,查文华,杨成艳. 压实高庙子膨润土中水运移时效性试验研究. 东华理工大学学报(自然科学版). 2023(02): 186-193 .
![]() | |
5. |
庄心善,潘睿捷,夏顺磊. 循环荷载作用下NaCl溶液对黏土动力特性影响及微观机理分析. 河北科技大学学报. 2023(04): 403-410 .
![]() |