• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Kai, ZHANG Ding-wen, CAO Zhi-guo. Effects of carbonation on permeability characteristics of cement-stabilized/ solidified lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 117-120. DOI: 10.11779/CJGE2019S2030
Citation: LI Kai, ZHANG Ding-wen, CAO Zhi-guo. Effects of carbonation on permeability characteristics of cement-stabilized/ solidified lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 117-120. DOI: 10.11779/CJGE2019S2030

Effects of carbonation on permeability characteristics of cement-stabilized/ solidified lead-contaminated soil

More Information
  • Received Date: April 28, 2019
  • Published Date: July 19, 2019
  • The method for artificially prepared lead-contaminated soil is used to prepare soil samples with different cement contents and lead concentrations. The effects of carbonation on the permeability of cement-solidified/stabilized lead-contaminated soil are studied. The relationship between the pore structures under the microscopic and the coefficient of permeability are compared. The results show that when the cement content is 7.5%, the carbonization increases the coefficient of permeability. When the cement content is 15%, the coefficient of permeability decreases under carbonization. The higher the lead concentration, the higher the coefficient of permeability of the sample, and the carbonization increases the permeability coefficient of the sample. The increase in the cement content significantly reduces the porosity of the sample. The porosity and coefficient of permeability of the sample increase under carbonization. The increase of the cement content significantly reduces the porosity of the sample. The carbonization increases the pore size of the sample with a pore diameter of less than 0.1 μm, and decreases the pore size of more than 0.1 μm.
  • [1]
    US EPA.Superfund remedy report fourteenth edition[M]. Charlestone: Create space Independent Publishing Platform, 2013: 18.
    [2]
    U.S. EPA.Treatment technologies for site cleanup: Annual status report[R].(Eleventh Edition)Washington D C: Office of Solid Waste and Emergency Response, 2004.
    [3]
    张涛. 水泥固化/稳定化重金属污染土碳化效应研究[D].南京: 东南大学, 2014.
    (ZHANG Tao.Carbonation effect on cement stabilization/ solidified heavy metal contaminated soils[D]. Nanjing: Southeast University, 2014. (in Chinese))
    [4]
    张亭亭, 李江山, 王平, 等. 磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J]. 岩土力学, 2016, 37(增刊2): 279-286.
    (ZHANG Ting-ting, LI Jiang-shan, WANG Ping, et al.State key laboratory of geomechanics and geotechnical engineering, institute of rock and soil mechanics[J]. Chinese Academy of Sciences, 2016, 37(S2): 279-286. (in Chinese))
    [5]
    王亮, 刘松玉, 蔡光华, 等. 活性MgO碳化固化土的渗透特性研究[J]. 岩土工程学报, 2018, 40(5): 953-959.
    (WANG Liang, LIU Song-yu, CAI Guang-hua, et al.Permeability properties of carbonated reactive MgO- stabilized soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 953-959. (in Chinese))
    [6]
    VAN GERVEN T, CORNELIS G.Effects of carbonationand leaching on porosity in cement-bound waste[J]. Waste Management, 2007, 27(7): 977-985.
    [7]
    KUMAR R, BHATTACHARJEE B, Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, 2003, 33: 155-164.
    [8]
    MOLLAH M Y A, HESS, et al. An FTIR and XPS investigation of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc[J]. Cement and Concrete Research, 1993, 23: 773-784.
    [9]
    肖婷, 方永浩, 章凯. 碳化对粉煤灰水泥石比表面积和孔径的影响[J]. 建筑材料学报, 2005, 8(4): 452-455.
    (XIAO Ting, FANG Li-hao, ZHANG Kai. Journal of Building Materials, 2005, 8(4): 452-455. (in Chinese))
    [10]
    张丰, 莫立武, 邓敏, 等. 碳化对钢渣-水泥-CaO-MgO砂浆强度和微观结构的影响[J]. 建筑材料学报, 2017, 20(6): 854-861.
    (ZHANG Feng, MO Li-wu, DENG Min, et al.Effect of carbonation curing on mechanical strength and microstructure of mortars prepared with steel slag-cement-MgO-CaO blends[J]. Journal of Building Materials, 2017, 20(6): 854-861. (in Chinese))
    [11]
    BISHOP P L, GONG R, KEENER T C.Effects of leaching on pore size distribution of solidified/stabilized wastes[J]. Journal of Hazardous Wastes, 1992, 31: 59-74.
    [12]
    CUISINIER O, BORGNE T L, DENEELE D.Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization[J]. Engineering Geology, 2011, 117(3/4): 229-235.
    [13]
    廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地:中国环境修复领域的新课题[J]. 环境科学, 2011, 32(3): 784-794.
    (LIAO Xiao-yong, CONG Zhong-yi, YAN Xiu-lan, et al.Urban Industrial Contaminated Sites: a New Issue in the Field of Environmental Remediation in China[J]. Environmental Science, 2011, 32(3): 784-794. (in Chinese))
    [14]
    ANTEMIRA A, COLIN D, HILLS S, et al.Long-term performance of aged waste forms treated by stabilization/ solidification[J]. Journal of Hazardous Materials, 2010, 181: 65-73.
    [15]
    薄煜琳. 粒化高炉矿渣和氧化镁固化稳定化铅污染黏土的强度、溶出及微观特性的研究[D]. 南京: 东南大学, 2015.
    (BO Yu-lin.The strength, leaching and microscopic mechanism of ground granulanted blast furnace slag and magnesium oxide stabilized lead-contaminated soils[D]. Nanjing: Southeast University, 2015. (in Chinese))
  • Related Articles

    [1]YING Sai, XIA Xiaozhou, WEN Tao, ZHOU Fengxi, CAO Yapeng, LI Guoyu, ZHANG Qing. Experimental study on freezing characteristic curve of soils based on nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1437-1444. DOI: 10.11779/CJGE20230301
    [2]TAO Gaoliang, PENG Yinjie, CHEN Yin, XIAO Henglin, LUO Chenchen, ZHONG Chuheng, LEI Da. A new fast prediction method for relative permeability coefficient of unsaturated soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 470-479. DOI: 10.11779/CJGE20221426
    [3]WANG Enliang, LI Yuang, REN Zhifeng, JIANG Haiqiang, LIU Chengqian, ZOU Yiyun, DU Shilin. Microstructural change of improved dispersive soil based on scanning electron microscope and nuclear magnetic resonance technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1123-1132. DOI: 10.11779/CJGE20220331
    [4]LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032
    [5]TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
    [6]MA Dong-dong, MA Qin-yong, HUANG Kun, ZHANG Rong-rong. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578. DOI: 10.11779/CJGE202103021
    [7]WANG Ying, LIU Jin, MA Xiao-fan, QI Chang-qing, LU Hong-ning. Immersion effect of polyurethane-reinforced sand based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2342-2349. DOI: 10.11779/CJGE202012023
    [8]CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003
    [9]DU Yang, Tang Li-yun, YANG Liu-jun, WANG Xin, BAI Miao-miao. Interface characteristics of frozen soil-structure thawing process based on nuclear magnetic resonance[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2316-2322. DOI: 10.11779/CJGE201912017
    [10]AN Ai-jun, LIAO Jing-yun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa- Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 152-156. DOI: 10.11779/CJGE2018S2031
  • Cited by

    Periodical cited type(9)

    1. 宋德坤,刘乐乐,王栋. 南海北部天然气水合物赋存区沉积物渗透性敏感规律试验研究. 地学前缘. 2024(06): 405-414 .
    2. 王丹,饶运章,刘戈,石亮,张美道. 离子型稀土镁盐浸矿不同深度矿土孔隙结构演化规律. 稀土. 2023(05): 92-102 .
    3. 李品良,许强,刘佳良,何攀,纪续,陈婉琳,彭大雷. 盐分影响重塑黄土渗透性的微观机制试验研究. 岩土力学. 2023(S1): 504-512 .
    4. 陈瑞敏,简文彬,张小芳,方泽化. CSFG-FR协同作用改良淤泥固化土性能试验研究. 岩土力学. 2022(04): 1020-1030 .
    5. 郭钟群,周可凡,金解放,周尖荣,尚白红. 流体理化特性对土体渗流规律影响研究进展. 有色金属科学与工程. 2022(04): 116-125 .
    6. 安鹏举,鲁莎,唐辉明,孙思璇,张子涵,缪明昊. 渗透作用下滑带细观结构演变特性. 地质科技通报. 2022(06): 169-179 .
    7. 张晓飞,陈新炜,严涛,张文伟,李守义. 基于裂缝冲刷试验的分散性土自愈性研究. 水资源与水工程学报. 2022(06): 167-173+181 .
    8. 陈仁祥,伏慧平,宋勇,王太伟,高柏. 稀土浸矿区山体滑坡特征及成因. 江西建材. 2021(01): 183-185 .
    9. 李文英,杨洋,曹成,许增光. 化学淤堵作用下尾矿砂孔隙分布及渗透特性试验研究. 水资源与水工程学报. 2021(03): 187-192 .

    Other cited types(22)

Catalog

    Article views (244) PDF downloads (107) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return