Citation: | LI Kai, ZHANG Ding-wen, CAO Zhi-guo. Effects of carbonation on permeability characteristics of cement-stabilized/ solidified lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 117-120. DOI: 10.11779/CJGE2019S2030 |
[1] |
US EPA.Superfund remedy report fourteenth edition[M]. Charlestone: Create space Independent Publishing Platform, 2013: 18.
|
[2] |
U.S. EPA.Treatment technologies for site cleanup: Annual status report[R].(Eleventh Edition)Washington D C: Office of Solid Waste and Emergency Response, 2004.
|
[3] |
张涛. 水泥固化/稳定化重金属污染土碳化效应研究[D].南京: 东南大学, 2014.
(ZHANG Tao.Carbonation effect on cement stabilization/ solidified heavy metal contaminated soils[D]. Nanjing: Southeast University, 2014. (in Chinese)) |
[4] |
张亭亭, 李江山, 王平, 等. 磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J]. 岩土力学, 2016, 37(增刊2): 279-286.
(ZHANG Ting-ting, LI Jiang-shan, WANG Ping, et al.State key laboratory of geomechanics and geotechnical engineering, institute of rock and soil mechanics[J]. Chinese Academy of Sciences, 2016, 37(S2): 279-286. (in Chinese)) |
[5] |
王亮, 刘松玉, 蔡光华, 等. 活性MgO碳化固化土的渗透特性研究[J]. 岩土工程学报, 2018, 40(5): 953-959.
(WANG Liang, LIU Song-yu, CAI Guang-hua, et al.Permeability properties of carbonated reactive MgO- stabilized soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 953-959. (in Chinese)) |
[6] |
VAN GERVEN T, CORNELIS G.Effects of carbonationand leaching on porosity in cement-bound waste[J]. Waste Management, 2007, 27(7): 977-985.
|
[7] |
KUMAR R, BHATTACHARJEE B, Porosity, pore size distribution and in situ strength of concrete. Cement and Concrete Research, 2003, 33: 155-164.
|
[8] |
MOLLAH M Y A, HESS, et al. An FTIR and XPS investigation of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc[J]. Cement and Concrete Research, 1993, 23: 773-784.
|
[9] |
肖婷, 方永浩, 章凯. 碳化对粉煤灰水泥石比表面积和孔径的影响[J]. 建筑材料学报, 2005, 8(4): 452-455.
(XIAO Ting, FANG Li-hao, ZHANG Kai. Journal of Building Materials, 2005, 8(4): 452-455. (in Chinese)) |
[10] |
张丰, 莫立武, 邓敏, 等. 碳化对钢渣-水泥-CaO-MgO砂浆强度和微观结构的影响[J]. 建筑材料学报, 2017, 20(6): 854-861.
(ZHANG Feng, MO Li-wu, DENG Min, et al.Effect of carbonation curing on mechanical strength and microstructure of mortars prepared with steel slag-cement-MgO-CaO blends[J]. Journal of Building Materials, 2017, 20(6): 854-861. (in Chinese)) |
[11] |
BISHOP P L, GONG R, KEENER T C.Effects of leaching on pore size distribution of solidified/stabilized wastes[J]. Journal of Hazardous Wastes, 1992, 31: 59-74.
|
[12] |
CUISINIER O, BORGNE T L, DENEELE D.Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization[J]. Engineering Geology, 2011, 117(3/4): 229-235.
|
[13] |
廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地:中国环境修复领域的新课题[J]. 环境科学, 2011, 32(3): 784-794.
(LIAO Xiao-yong, CONG Zhong-yi, YAN Xiu-lan, et al.Urban Industrial Contaminated Sites: a New Issue in the Field of Environmental Remediation in China[J]. Environmental Science, 2011, 32(3): 784-794. (in Chinese)) |
[14] |
ANTEMIRA A, COLIN D, HILLS S, et al.Long-term performance of aged waste forms treated by stabilization/ solidification[J]. Journal of Hazardous Materials, 2010, 181: 65-73.
|
[15] |
薄煜琳. 粒化高炉矿渣和氧化镁固化稳定化铅污染黏土的强度、溶出及微观特性的研究[D]. 南京: 东南大学, 2015.
(BO Yu-lin.The strength, leaching and microscopic mechanism of ground granulanted blast furnace slag and magnesium oxide stabilized lead-contaminated soils[D]. Nanjing: Southeast University, 2015. (in Chinese)) |
[1] | HAN Zhong, ZOU Weilie, PEI Qiuyang, WANG Xiequn, ZHANG Hongri. Effects of humidity and freeze-thaw cycles on compression and pore structure characteristics of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 495-505. DOI: 10.11779/CJGE20230367 |
[2] | ZHANG Yu, ZHANG Qing, WANG Yijie, CAI Guojun, DONG Xiaoqiang, DU Yanjun, JIANG Ningjun. Engineering properties and environmental safety of biostimulated MICP-treated lead-contaminated soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2352-2360. DOI: 10.11779/CJGE20230749 |
[3] | LIU Qian-qian, CAI Guo-qing, HAN Bo-wen, QIN Yu-teng, LI Jian. Experimental study on pore structure and freezing characteristics of graded soils based on NMR[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 178-182. DOI: 10.11779/CJGE2022S1032 |
[4] | LI Jiang-shan, WANG Ping, ZHANG Ting-ting, HUANG Qian, XUE Qiang. Leaching characteristics and mechanism of heavy metal in solidified/ stabilized contaminated soil under acid solution soaking[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 135-139. DOI: 10.11779/CJGE2017S1027 |
[5] | LI Jiang-shan, WANG Ping, ZHANG Ting-ting, LI Zhen-ze, XUE Qiang. Effect of freeze-thaw cycle on engineering properties and microstructure of stabilized/solidified lead contaminated soil treated by cement[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2043-2050. DOI: 10.11779/CJGE201611014 |
[6] | YANG Yu-ling, DU Yan-jun, REN Wei-wei, FAN Ri-dong. Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014 |
[7] | ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu, CHEN Lei. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017 |
[8] | WEI Ming-li, DU Yan-jun, LIU Song-yu, ZHU Jing-jing, YANG Yu-ling. Leaching characteristics of lead-contaminated clay stabilized by phosphate rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 768-774. DOI: 10.11779/CJGE201404024 |
[9] | JIANG Ning-jun, DU Yan-jun, LIU Song-yu, LI Chen-yang, LI Wen-tao. Leaching behaviors of cement-based solidification/stabilization treated lead contaminated soils under effects of acid rain[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 739-744. |
[10] | Unconfined Compressive Strength Properties of Cement Solidified/Stabilized Lead-Contaminated Soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. |