• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Yu-ling, DU Yan-jun, REN Wei-wei, FAN Ri-dong. Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014
Citation: YANG Yu-ling, DU Yan-jun, REN Wei-wei, FAN Ri-dong. Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014

Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills

More Information
  • Received Date: November 23, 2014
  • Published Date: October 19, 2015
  • Soil-bentonite (SB) slurry walls are widely used in controlling migration of the contaminants in groundwater. Adding two types of phosphate to lead contaminated SB backfills may be advantageous to maintain the deflocculated structure of the bentonite in backfill, which is beneficial to enhance contaminant retarding ability of the backfill. A series of sedimentation and scanning electron microscope (SEM) tests are conducted to investigate changes in sedimentation behavior of SB backfills with various lead concentrations and phosphate contents/types, and the relevant mechanism is given. The results reveal that lead results in flocculation of the SB backfill and a 36% increase in the sediment volume. A certain amount of phosphate makes sedimentation curve of the contaminated backfill change from flocculation sedimentation type to accumulation sedimentation type, and the sediment volume of the backfill decreases significantly. Addition of phosphate enhances dispersity of the SB backfill due to steric stabilization of the phosphate and increased negative charge of the clay particle surfaces. The soil particles present a paralleled arrangement. Sodium hexametaphosphate has higher dispersibility compared with sodium pyrophosphate, because the backfills amended with sodium hexametaphosphate have smaller sediment volume. Optimum content of the phosphate is 0.1%, 0.5% and 2% while lead concentration in the backfill ranges in 0~0.1, 1~2, 6 mmol, respectively. The results obtained in this study may provide a meaningful guidance for improving dispersity of contaminated SB backfills.
  • [1]
    范日东, 杜延军, 陈左波, 等. 受铅污染的土-膨润土竖向隔离墙材料的压缩及渗透特性试验研究[J]. 岩土工程学报, 2013, 35(5): 841-848. (FAN Ri-dong, DU Yan-jun, CHEN Zuo-bo, et al. Compressibility and permeability characteristics of lead contaminated soil-bentonite vertical cutoff wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 841-848. (in Chinese))
    [2]
    FAN R D, DU Y J, REDDY K R, et al. Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment[J]. Applied Clay Science, 2014, 101(2): 119-127.
    [3]
    SHARMA H D, REDDY K R. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies[M]. New York: John Wiley & Sons, Inc, 2004.
    [4]
    MALUSIS M A, MCKEEHAN M D. Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 189-198.
    [5]
    JO H Y, KATSUMI T, BENSON C H, EDIL T B. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(7): 557-567.
    [6]
    JO H Y, BENSON C H, SHACKELFORD C D, et al. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 405-417.
    [7]
    MALUSIS M A, BARBEN E J, EVANS J C. Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 664-672.
    [8]
    HONG C S, SHACKELFORD C D, MALUSIS M A. Consolidation and hydraulic conductivity of zeolite-amended soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 15-25.
    [9]
    杨玉玲, 杜延军, 范日东, 等. 分散剂改良土-膨润土竖向隔离墙材料黏度试验研究[J]. 东南大学学报(自然科学版), 2014, 44(3): 650-654. (YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al. Experimental study on viscosity of soil-bentonite vertical cut-off wall backfills amended with dispersant[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 650-654. (in Chinese))
    [10]
    LAMBE T W. The improvement of soil properties with dispersants[J]. Boston Society Civil Engineers Journal, 1954, 41(2): 184-207.
    [11]
    ADEBOWALE K O, UNUABONAH I E, OLU-OWOLABI B I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay[J]. Journal of Hazardous Materials, 2006, 134(1): 130-139.
    [12]
    SCHACKELFORD C D. Waste-soil interactions that alter hydraulic conductivity[J]. ASTM Special Technical Publication, 1994, 1142: 111-168.
    [13]
    LEE J M, SHACKELFORD C D, BENSON C H, et al. Correlating index properties and hydraulic conductivity of geosynthetic clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1319-1329.
    [14]
    SRIDHARAN A, PRAKASH K. Influence of clay mineralogy and pore-medium chemistry on clay sediment formation[J]. Canadian Geotechnical Journal, 1999, 36(5): 961-966.
    [15]
    MA M. The dispersive effect of sodium hexametaphosphate on kaolinite in saline water[J]. Clays and Clay Minerals, 2012, 60(4): 405-410.
    [16]
    PIERRE A C, MA K. Sedimentation behaviour of kaolinite and montmorillonite mixed with iron additives, as a function of their zeta potential[J]. Journal of Materials Science, 1997, 32(11): 2937-2947.
    [17]
    SRIDHARAN A, RAO S M, MURTHY N S. Liquid limit of montmorillonite soils[J]. Geotechnical Testing Journal, 1986, 19(3): 156-164.
    [18]
    WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43(6): 587-600.
    [19]
    WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties[J]. Canadian Geotechnical Journal, 2006, 43(6): 601-617.
    [20]
    OLPHEN H. An introduction to clay colloid chemistry: for clay technologists, geologists, and soil scientists[M]. 2nd ed. New York: Wiley, 1977.
    [21]
    NIGHTINGALE JR E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387.
    [22]
    SRIDHARAN A, RAO S M, MURTHY N S, et al. Compressibility behaviour of homoionized bentonites[J]. Géotechnique, 1986, 36(4): 551-564.
    [23]
    SRIDHARAN A, RAO S M, MURTHY N S, et al. Compressibility behaviour of homoionized bentonites[J]. Géotechnique, 1987, 37(4): 533-535.
    [24]
    LAGALY G. Principles of flow of kaolin and bentonite dispersions[J]. Applied Clay Science, 1989, 4(2): 105-123.
    [25]
    LAGALY G, ZIESMER S. Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions[J]. Advances in Colloid and Interface Science, 2003, 100: 105-128.
    [26]
    RUBY M V, DAVIS A, NICHOLSON A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science & Technology, 1994, 28(4): 646-654.
  • Related Articles

    [1]ZHU Rui, XING Wei, GUO Wanli, HUANG Yinghao, ZHOU Feng, WANG Xudong. Freeze-thaw performance and micro-mechanism of canal foundation silt treated by MICP[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 376-387. DOI: 10.11779/CJGE20231014
    [2]LANG Ruiqing, PEI Luxi, SUN Liqiang, FENG Shouzong. Experimental study on unconsolidated mechanical properties of soft clay under freeze-thaw cycles with confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 43-48. DOI: 10.11779/CJGE2024S20027
    [3]JIN Jiaxu, QIN Zhifa, LIU Lei, WAN Yong, WANG Jing, ZUO Shenghao. Mechanical response and micro-mechanism of humus soil solidified by industrial solid waste-cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2410-2419. DOI: 10.11779/CJGE20230780
    [4]XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
    [5]HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005
    [6]ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018
    [7]CHEN Cheng, GUO Wei, REN Yu-xiao. Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 135-140. DOI: 10.11779/CJGE2020S2024
    [8]HAN Tie-lin, CHEN Yun-sheng, SHI Jun-ping, LI Zhi-hui. Experimental study on mechanical properties and damage degradation mechanism of calcareous sandstone subjected to freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1802-1812. DOI: 10.11779/CJGE201610009
    [9]SHEN Yan-jun, YANG Geng-she, RONG Teng-long, LIU Hui, LÜ Wu-yang. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782. DOI: 10.11779/CJGE201610005
    [10]CHEN You-liang, WANG Peng, ZHANG Xue-wei, DU Xi. Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2226-2235. DOI: 10.11779/CJGE201412010

Catalog

    Article views (317) PDF downloads (439) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return