Citation: | YANG Yu-ling, DU Yan-jun, REN Wei-wei, FAN Ri-dong. Experimental study on effect of phosphates on sedimentation behavior of lead-contaminated soil-bentonite slurry wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1856-1864. DOI: 10.11779/CJGE201510014 |
[1] |
范日东, 杜延军, 陈左波, 等. 受铅污染的土-膨润土竖向隔离墙材料的压缩及渗透特性试验研究[J]. 岩土工程学报, 2013, 35(5): 841-848. (FAN Ri-dong, DU Yan-jun, CHEN Zuo-bo, et al. Compressibility and permeability characteristics of lead contaminated soil-bentonite vertical cutoff wall backfills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 841-848. (in Chinese))
|
[2] |
FAN R D, DU Y J, REDDY K R, et al. Compressibility and hydraulic conductivity of clayey soil mixed with calcium bentonite for slurry wall backfill: Initial assessment[J]. Applied Clay Science, 2014, 101(2): 119-127.
|
[3] |
SHARMA H D, REDDY K R. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies[M]. New York: John Wiley & Sons, Inc, 2004.
|
[4] |
MALUSIS M A, MCKEEHAN M D. Chemical compatibility of model soil-bentonite backfill containing multiswellable bentonite[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 189-198.
|
[5] |
JO H Y, KATSUMI T, BENSON C H, EDIL T B. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(7): 557-567.
|
[6] |
JO H Y, BENSON C H, SHACKELFORD C D, et al. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(4): 405-417.
|
[7] |
MALUSIS M A, BARBEN E J, EVANS J C. Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 664-672.
|
[8] |
HONG C S, SHACKELFORD C D, MALUSIS M A. Consolidation and hydraulic conductivity of zeolite-amended soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 15-25.
|
[9] |
杨玉玲, 杜延军, 范日东, 等. 分散剂改良土-膨润土竖向隔离墙材料黏度试验研究[J]. 东南大学学报(自然科学版), 2014, 44(3): 650-654. (YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al. Experimental study on viscosity of soil-bentonite vertical cut-off wall backfills amended with dispersant[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 650-654. (in Chinese))
|
[10] |
LAMBE T W. The improvement of soil properties with dispersants[J]. Boston Society Civil Engineers Journal, 1954, 41(2): 184-207.
|
[11] |
ADEBOWALE K O, UNUABONAH I E, OLU-OWOLABI B I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay[J]. Journal of Hazardous Materials, 2006, 134(1): 130-139.
|
[12] |
SCHACKELFORD C D. Waste-soil interactions that alter hydraulic conductivity[J]. ASTM Special Technical Publication, 1994, 1142: 111-168.
|
[13] |
LEE J M, SHACKELFORD C D, BENSON C H, et al. Correlating index properties and hydraulic conductivity of geosynthetic clay liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1319-1329.
|
[14] |
SRIDHARAN A, PRAKASH K. Influence of clay mineralogy and pore-medium chemistry on clay sediment formation[J]. Canadian Geotechnical Journal, 1999, 36(5): 961-966.
|
[15] |
MA M. The dispersive effect of sodium hexametaphosphate on kaolinite in saline water[J]. Clays and Clay Minerals, 2012, 60(4): 405-410.
|
[16] |
PIERRE A C, MA K. Sedimentation behaviour of kaolinite and montmorillonite mixed with iron additives, as a function of their zeta potential[J]. Journal of Materials Science, 1997, 32(11): 2937-2947.
|
[17] |
SRIDHARAN A, RAO S M, MURTHY N S. Liquid limit of montmorillonite soils[J]. Geotechnical Testing Journal, 1986, 19(3): 156-164.
|
[18] |
WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. I. Surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43(6): 587-600.
|
[19] |
WANG Y H, SIU W K. Structure characteristics and mechanical properties of kaolinite soils. II. Effects of structure on mechanical properties[J]. Canadian Geotechnical Journal, 2006, 43(6): 601-617.
|
[20] |
OLPHEN H. An introduction to clay colloid chemistry: for clay technologists, geologists, and soil scientists[M]. 2nd ed. New York: Wiley, 1977.
|
[21] |
NIGHTINGALE JR E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Physical Chemistry, 1959, 63(9): 1381-1387.
|
[22] |
SRIDHARAN A, RAO S M, MURTHY N S, et al. Compressibility behaviour of homoionized bentonites[J]. Géotechnique, 1986, 36(4): 551-564.
|
[23] |
SRIDHARAN A, RAO S M, MURTHY N S, et al. Compressibility behaviour of homoionized bentonites[J]. Géotechnique, 1987, 37(4): 533-535.
|
[24] |
LAGALY G. Principles of flow of kaolin and bentonite dispersions[J]. Applied Clay Science, 1989, 4(2): 105-123.
|
[25] |
LAGALY G, ZIESMER S. Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions[J]. Advances in Colloid and Interface Science, 2003, 100: 105-128.
|
[26] |
RUBY M V, DAVIS A, NICHOLSON A. In situ formation of lead phosphates in soils as a method to immobilize lead[J]. Environmental Science & Technology, 1994, 28(4): 646-654.
|
[1] | ZHU Rui, XING Wei, GUO Wanli, HUANG Yinghao, ZHOU Feng, WANG Xudong. Freeze-thaw performance and micro-mechanism of canal foundation silt treated by MICP[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(2): 376-387. DOI: 10.11779/CJGE20231014 |
[2] | LANG Ruiqing, PEI Luxi, SUN Liqiang, FENG Shouzong. Experimental study on unconsolidated mechanical properties of soft clay under freeze-thaw cycles with confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 43-48. DOI: 10.11779/CJGE2024S20027 |
[3] | JIN Jiaxu, QIN Zhifa, LIU Lei, WAN Yong, WANG Jing, ZUO Shenghao. Mechanical response and micro-mechanism of humus soil solidified by industrial solid waste-cement[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(11): 2410-2419. DOI: 10.11779/CJGE20230780 |
[4] | XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219 |
[5] | HUANG Ying-hao, CHEN Yong, ZHU Xun, WU Zhi-qiang, ZHU Rui, WANG Shuo, WU Min. Experimental study and micro-mechanism analysis of freeze-thaw performance of expansive soils improved by phase-change materials[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1994-2002. DOI: 10.11779/CJGE202111005 |
[6] | ZHAO Gui-tao, HAN Zhong, ZOU Wei-lie, WANG Xie-qun. Influences of drying-wetting-freeze-thaw cycles on soil-water and shrinkage characteristics of expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1139-1146. DOI: 10.11779/CJGE202106018 |
[7] | CHEN Cheng, GUO Wei, REN Yu-xiao. Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 135-140. DOI: 10.11779/CJGE2020S2024 |
[8] | HAN Tie-lin, CHEN Yun-sheng, SHI Jun-ping, LI Zhi-hui. Experimental study on mechanical properties and damage degradation mechanism of calcareous sandstone subjected to freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1802-1812. DOI: 10.11779/CJGE201610009 |
[9] | SHEN Yan-jun, YANG Geng-she, RONG Teng-long, LIU Hui, LÜ Wu-yang. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1775-1782. DOI: 10.11779/CJGE201610005 |
[10] | CHEN You-liang, WANG Peng, ZHANG Xue-wei, DU Xi. Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2226-2235. DOI: 10.11779/CJGE201412010 |