• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
Citation: XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219

Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model

More Information
  • Received Date: March 01, 2022
  • Available Online: April 16, 2023
  • To address the freeze-thaw problems of rocks in cold-zone rock engineering, the sandstone is selected as the specimen and analyzed for mass loss, microstructure and mechanical properties by conducting the cyclic indoor freeze-thaw tests, scanning electron microscope observations and triaxial compression tests. Then, based on the Lemaitre strain equivalence hypothesis theory, the meso-scale freeze-thaw damage variables and force damage variables are introduced to reflect the process of freeze-thaw damage of the rocks to describe the degree of deterioration of rock materials and the damage evolution law. Using the continuous damage mechanics theory, the damage evolution equation and the meso-scale damage constitutive model for the rocks under the coupling of freeze-thaw and cofining pressure are established. The theoretical derivation method is used to obtain the required expressions for model parameters. Finally, the rationality and accuracy of the model are verified by the triaxial compression test data of freeze-thaw of the rocks. The peak points of the test curve are compared with those of the theoretical curve by the model, and the results show that they are in good agreement. The damage constitutive model can better reflect the stress-strain peak characteristics of the rocks during triaxial compression, which verifies the rationality and reliability of the proposed model and the relevant method for determining the model parameters. This model expands the damage model for the rocks under the coupling of freeze-thaw and confining pressure and further reveals their damage mechanism and failure law.

  • [1]
    汤连生, 张鹏程, 王思敬. 水-岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(4): 526-531. doi: 10.3321/j.issn:1000-6915.2002.04.015

    TANG Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 526-531. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.04.015
    [2]
    WIEDERHORN S M. A chemical interpretation of static fatigue[J]. Journal of the American Ceramic Society, 1972, 55(2): 81-85. doi: 10.1111/j.1151-2916.1972.tb11215.x
    [3]
    霍润科, 李宁, 刘汉东. 酸性环境下类砂岩材料波速特性分析[J]. 岩土力学, 2005, 26(4): 608-611. doi: 10.3969/j.issn.1000-7598.2005.04.021

    HUO Runke, LI Ning, LIU Handong. Analysis of characteristics of longitudinal wave velocity of mortar subjected to hydrochloric acid attack[J]. Rock and Soil Mechanics, 2005, 26(4): 608-611. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.04.021
    [4]
    丁梧秀, 冯夏庭. 化学腐蚀下灰岩力学效应的试验研究[J]. 岩石力学与工程学报, 2004, 23(21): 3571-3576. doi: 10.3321/j.issn:1000-6915.2004.21.002

    DING Wuxiu, FENG Xiating. Testing study on mechanical effect for limestone under chemical erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3571-3576. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.21.002
    [5]
    杨更社, 蒲毅彬, 马巍. 寒区冻融环境条件下岩石损伤扩展研究探讨[J]. 实验力学, 2002, 17(2): 220-226. doi: 10.3969/j.issn.1001-4888.2002.02.015

    YANG Gengshe, PU Yibin, MA Wei. Discussion on the damage propagation for the rock under the frost and thaw condition of frigid zone[J]. Journal of Experimental Mechanics, 2002, 17(2): 220-226. (in Chinese) doi: 10.3969/j.issn.1001-4888.2002.02.015
    [6]
    何国梁, 张磊, 吴刚. 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004, 25(增刊2): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htm

    HE Guoliang, ZHANG Lei, WU Gang. Test study on physical characteristics of rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2004, 25(S2): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htm
    [7]
    陈有亮, 王朋, 张学伟, 等. 花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J]. 岩土工程学报, 2014, 36(12): 2226-2235. doi: 10.11779/CJGE201412010

    CHEN Youliang, WANG Peng, ZHANG Xuewei, et al. Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2226-2235. (in Chinese) doi: 10.11779/CJGE201412010
    [8]
    韩铁林, 师俊平, 陈蕴生, 等. 不同化学腐蚀下砂岩冻融力学特性劣化的试验研究[J]. 固体力学学报, 2017, 38(6): 503-520. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201706003.htm

    HAN Tielin, SHI Junping, CHEN Hengchen, et al. Laboratory investigation on the mechanical properties of sandstone immersed in different chemical corrosion under freeze-thaw cycles[J]. Chinese Journal of Solid Mechanics, 2017, 38(6): 503-520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201706003.htm
    [9]
    张君岳, 田镇, 刘桓兑, 等. 冻融红砂岩物理力学性质损伤演化试验研究[J]. 矿业研究与开发, 2020, 40(10): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202010015.htm

    ZHANG Junyue, TIAN Zhen, LIU Huandui, et al. Experimental research of physical and mechanical damage evolution of freeze-thaw red sandstone[J]. Mining Research and Development, 2020, 40(10): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202010015.htm
    [10]
    张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm

    ZHANG Huimei, YANG Gengshe. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm
    [11]
    徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012

    XU Guangmiao, LIU Quansheng. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076-3082. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.012
    [12]
    孟祥振, 张慧梅, 康晓革. 含孔隙冻融岩石的损伤本构模型[J]. 西安科技大学学报, 2019, 39(4): 688-692. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201904019.htm

    MENG Xiangzhen, ZHANG Huimei, KANG Xiaoge. Damage constitutive model of porous rock under freeze-thaw[J]. Journal of Xi'an University of Science and Technology, 2019, 39(4): 688-692. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201904019.htm
    [13]
    杨涛, 霍树义, 金坎辉, 等. 冻融循环下砂岩损伤演化及本构模型[J]. 地质与勘探, 2020, 56(4): 826-831. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202004016.htm

    YANG Tao, HUO Shuyi, JIN Kanhui, et al. Damage evolution and constitutive model under freeze-thaw cycles[J]. Geology and Exploration, 2020, 56(4): 826-831. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202004016.htm
    [14]
    MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59-70.
    [15]
    SATAKE M. Stress-deformation and strength characteristics of soil under three difference principle stresses[J]. Proc of Japan Society of Civil Engineers, 1976, 246: 137-138.
    [16]
    MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2): 119-127.
    [17]
    张二锋, 杨更社, 刘慧. 冻融循环作用下砂岩细观损伤演化规律试验研究[J]. 煤炭工程, 2018, 50(10): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201810013.htm

    ZHANG Erfeng, YANG Gengshe, LIU Hui. Experimental study on meso-damage evolution of sandstone under freeze-thaw cycles[J]. Coal Engineering, 2018, 50(10): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201810013.htm
    [18]
    许玉娟, 周科平, 李杰林, 等. 冻融岩石核磁共振检测及冻融损伤机制分析[J]. 岩土力学, 2012, 33(10): 3001-3005, 3102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210022.htm

    XU Yujuan, ZHOU Keping, LI Jielin, et al. Study of rock NMR experiment and damage mechanism analysis under freeze-thaw condition[J]. Rock and Soil Mechanics, 2012, 33(10): 3001-3005, 3102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210022.htm
    [19]
    张蒙军. 冻融环境下红砂岩物理力学特性试验研究[D]. 西安: 西安科技大学, 2015.

    ZHANG Mengjun. The Experimental Studyon the Physical and Mechanical Properties of Red Sandstone under the Environment of Freeze-Thaw Environment[D]. Xi'an: Xi'an University of Science and Technology, 2015. (in Chinese)
  • Related Articles

    [1]XUE Yi, ZHANG Zhihao, LIU Jia, CAI Chengzheng, ZHANG Zhizhen, GAO Feng, SHI Xuyang, ZHANG Yun. Acoustic emission evolution characteristics and constitutive model for damage of granite after high-temperature heating and liquid nitrogen cold shock treatment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1849-1859. DOI: 10.11779/CJGE20230529
    [2]DING Yu, WEI Wei-bing, PAN Bo, HUANG Qun-zhi, LIU Zhen-xian, LIU Da-xiang. Statistical damage model for fiber-reinforced vegetation concrete substrate[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 652-659. DOI: 10.11779/CJGE202204007
    [3]CUI Hao, XIAO Yang, SUN Zeng-chun, WANG Cheng-gui, LIANG Fang, LIU Han-long. Elastoplastic constitutive model for biocemented sands[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 474-482. DOI: 10.11779/CJGE202203009
    [4]DU Xiu-li, HUANG Jing-qi, JIN Liu, ZHAO Mi. Three-dimension elastic-plastic damage constitutive model for intact rock[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 978-985. DOI: 10.11779/CJGE201706002
    [5]ZHOU En-quan, WANG Zhi-hua, CHEN Guo-xing, LÜ Cong. Constitutive model for fluid of post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(1): 112-118. DOI: 10.11779/CJGE201501013
    [6]WANG Lei, ZHU Bin, LI Jun-chao, CHEN Yun-min. Two-phase constitutive model for fiber-reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1326-1333. DOI: 10.11779/CJGE201407017
    [7]MI Zhan-kuan, LI Guo-ying, CHEN Sheng-shui. Constitutive model for coarse granular materials based on breakage energy[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1801-1811.
    [8]Implementation and application of constitutive model for damage evolution of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [9]Degrading deformation of rockfill materials and its constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1).
    [10]YANG Songlin, ZHU Huanchun, LIU Zude. A new constitutive model of the layered rock mass reinforced with bolts[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 427-430.
  • Cited by

    Periodical cited type(22)

    1. 祝世婕, 祁长青, 边心宇, 邓福起. 冻融作用下随机损伤花岗岩裂隙演化及力学特性. 地下空间与工程学报. 2025(05)
    2. 胥品潮, 王大国, 路建国, 尹力, 刘云. 干湿和冻融循环作用下板岩孔隙及渗透性演化规律. 冰川冻土. 2025(04)
    3. 梁勇. 不同含水率砂岩冻融力学特性及损伤模型研究. 辽宁工程技术大学学报(自然科学版). 2025(04)
    4. 孙杰龙, 娄冰, 陈锐. 考虑冻结时长及边界条件的砂岩损伤力学特性. 延安大学学报(自然科学版). 2025(02)
    5. 侯召旭,刘先峰,王通,张俊,袁胜洋,胡金山. 冻融损伤石英岩力学特性及损伤本构模型. 长江科学院院报. 2025(01): 177-185 .
    6. 王文通,郭沙,李治兴,李治国,刘传举. 基于核磁共振技术的砂岩孔隙结构冻融损伤演化规律试验研究. 黄金科学技术. 2025(01): 114-126 .
    7. 刘先峰,王通,李建国,袁胜洋,侯召旭,张俊. 冻融循环作用下灰岩和石英岩力学特性及损伤本构模型试验研究. 中国铁道科学. 2025(01): 1-14 .
    8. 王永辉. 冻融循环条件下黏土抗剪强度试验研究. 路基工程. 2025(02): 57-62 .
    9. 邓乃夫,乔兰,刘建,张庆龙,李庆文. 基于裂隙演化微分动力学机制的岩石损伤本构模型. 中南大学学报(自然科学版). 2024(02): 677-689 .
    10. 秦飞飞,盛冬发. 冻融循环下混杂纤维再生混凝土抗压强度预测方法. 科学技术与工程. 2024(16): 6870-6881 .
    11. 孙大增,赵文,许兴亮,王鑫. 不同组构砂岩微观破坏特征分析. 东北大学学报(自然科学版). 2024(04): 584-591 .
    12. 王磊,陈礼鹏,谢广祥,范浩,李少波,邹鹏,张宇. CO_2-荷载耦合作用下煤体细观统计损伤本构模型及验证. 煤炭学报. 2024(06): 2630-2642 .
    13. 张昊,苏占东,孙进忠,牛耀,梁金平,张建勇,王鸷文. 冻融温度区间对砂岩声发射特性的影响. 科学技术与工程. 2024(18): 7812-7820 .
    14. 张蓉蓉,沈永辉,马冬冬,平琦,杨毅. 循环冲击作用下冻融红砂岩动力学特性与损伤机理. 爆炸与冲击. 2024(08): 133-148 .
    15. 张俊,刘先峰,王通,侯召旭,胡金山. 冻融灰岩能量演化规律及分段损伤模型. 科学技术与工程. 2024(29): 12658-12666 .
    16. 郭威,温韬,贾文君,全志,王熠辉. 冻融作用下寒区砂岩力学特性劣化规律及数值分析. 矿业研究与开发. 2024(11): 144-154 .
    17. 田森,赵映,司鹄,朱淳,李全贵. 寒区露天矿岩质边坡裂隙岩体冻融损伤特征及力学特性试验研究. 煤炭学报. 2024(12): 4687-4700 .
    18. 高红梅,李洪伟,杨帆,徐立. 基于Maxwell分布的冻融砂岩本构模型研究. 黑龙江科技大学学报. 2023(02): 287-293 .
    19. 赵志波. 冻融条件下隧道围岩单轴蠕变力学特性试验及本构模型. 黑龙江科技大学学报. 2023(02): 299-305 .
    20. 王体富,周宗红,宋庆友. 基于Logistic分布的岩石损伤统计模型. 有色金属(矿山部分). 2023(04): 107-113+124 .
    21. 倪苏黔,徐颖,葛进进,王凤瑶,谢昊天,丁进甫. 干–酸侵蚀下深地白砂岩动静态损伤特性研究. 岩石力学与工程学报. 2023(10): 2528-2539 .
    22. 王中文,徐颖,谢守冬,焦杨浩楠,于美鲁,谢昊天. 岩石冻融损伤细观特征数值模拟研究. 中国安全生产科学技术. 2023(11): 143-149 .

    Other cited types(34)

Catalog

    WANG Suran

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (685) PDF downloads (180) Cited by(56)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return