Citation: | ZHANG Ding-wen, CAO Zhi-guo, LIU Song-yu, CHEN Lei. Characteristics and empirical formula of electrical resistivity of cement-solidified lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1685-1691. DOI: 10.11779/CJGE201509017 |
[1] |
CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/stabilization: A review[J]. Waste Management, 2009, 29(1): 390-403.
|
[2] |
United States Environmental Protection Agency. Solidification /stabilization use at superfund sites[R]. Washington D C: Office of Solid Waste and Emergency Response, Technology Innovation Office, 2000.
|
[3] |
陈 蕾, 刘松玉, 杜延军, 等. 水泥固化重金属铅污染土的强度特性研究[J]. 岩土工程学报, 2010, 32(12): 1898-1903. (CHEN Lei, LIU Song-yu, DU Yan-jun, et al. Unconfined compressive strength properties of cement solidified/ stabilized lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. (in Chinese))
|
[4] |
JIANG N J, DU Y J, LIU S Y, et al. Experimental investigation of the compressibility behaviour of cement-solidified/ stabilized zinc-contaminated kaolin clay[J]. Géotechnique Letters, 2014, 4(2): 27-32.
|
[5] |
刘兆鹏, 杜延军, 蒋宁俊, 等. 基于半动态淋滤试验的水泥固化铅污染黏土溶出特性研究[J]. 岩土工程学报, 2013, 35(12): 2212-2218. (LIU Zhao-peng, DU Yan-jun, JIANG Ning-jun, et al. Leaching properties of cement-solidified lead-contaminated clay via semi-dynamic leaching tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2212-2218. (in Chinese))
|
[6] |
AL-TABBAA A, EVANS C W, WALLACE C J. Pilot in situ auger mixing treatment of a contaminated site: Part 2. Site trial[J]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 1998, 131(2): 89-95.
|
[7] |
AL-TABBAA A, BOES N. Pilot in situ auger mixing treatment of a contaminated site: Part 4. Performance at five years[J]. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 2002, 155(3): 187-202.
|
[8] |
蔡国军, 邹海峰, 刘松玉, 等. 电阻率CPTU在某农药厂污染场地评价中的应用[J]. 工程地质学报, 2012, 20(5): 821-826. (CAI Guo-jun, ZOU Hai-feng, LIU Song-yu, et al. Application of resistivity CPTU in evaluation of contamination site for pesticide factory[J]. Journal of Engineering Geology, 2012, 20(5): 821-826. (in Chinese))
|
[9] |
BRYSON L S, BATHE A. Determination of selected geotechnical properties of soil using electrical conductivity testing[J]. Geotechnical Test Journal, 2009, 32(3): 1-10.
|
[10] |
RINALDI V A, CUESTAS G A. Ohmic conductivity of a compacted silty clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 824-835.
|
[11] |
XIAO Lian-zhen, LI Zong-jin. New understanding of cement hydration mechanism through electrical resistivity measurement and microstructure investigations[J]. Journal of Materials in Civil Engineering, 2009, 21(8): 368-373.
|
[12] |
LIU Song-yu, DU Yan-jun, HAN Li-hua. Experimental study on the electrical resistivity of soil-cement admixtures[J]. Environmental Geology, 2008, 54(6): 1227-1233.
|
[13] |
LIU Song-yu, ZHANG Ding-wen, ZHU Zhi-duo. On the uniformity of deep mixed soil-cement columns with electrical resistivity method[J]. Geotechnical Special Publication, ASCE, 2009, 188: 140-149.
|
[14] |
ZHANG Ding-wen, CHEN Lei, LIU Song-yu. Key parameters controlling electrical resistivity and strength of cement treated soils[J]. Journal of Central South University, 2012, 19(10): 2991-2998.
|
[15] |
董晓强, 白晓红, 赵永强, 等. NaOH污染下水泥土的电阻率变化研究[J]. 岩土工程学报, 2007, 29(11): 1715-1719. (DONG Xiao-qiang, BAI Xiao-hong, ZHAO Yong-qiang, et al. Study on electrical resistivity of soil-cement polluted by NaOH[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1715-1719. (in Chinese))
|
[16] |
ZHANG Ding-wen, CAO Zhi-guo, FAN Li-bin, et al. Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method[J]. Engineering Geology, 2014, 170: 80-88.
|
[17] |
CHEN L, DU Y J, LIU S Y, et al. Evaluation of cement hydration properties of cement-stabilized lead-contaminated soils using electrical resistivity measurement[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2011, 15(4): 312-320.
|
[18] |
CAMPANELLA R G, WEEMEES I. Development and use of an electrical resistivity cone for groundwater contamination studies[J]. Canadian Geotechnical Journal, 1990, 27(5): 557-567.
|
[19] |
PANDEY B, KINRADE S D, CATALAN L J. Effects of carbonation on the leachability and compressive strength of cement-solidified and geopolymer-solidified synthetic metal wastes[J]. Journal of Environmental Management, 2012, 101: 59-67.
|
[20] |
KOMINE H. Evaluation of chemical grouted soil by electrical resistivity[J]. Ground Improvement, 1997, 1(2): 101-113.
|
[21] |
BOARDMAN D J. Lime stabilization: clay-metal-lime interactions[D]. Loughborough: Loughborough University, 1999.
|
[22] |
廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地: 中国环境修复领域的新课题[J]. 环境科学, 2011, 32(2): 784-794. (LIAO Xiao-yong, CHONG Zhong-yi, YAN Xiu-lan, et al. Urban industrial contaminated sites: a new issue in the field of environmental remediation in China[J]. Environmental Science, 2011, 32(2): 784-794. (in Chinese))
|
[23] |
ARCHIE G E. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Petroleum Transactions of AIME, 1942, 146(1): 54-62.
|
[24] |
KELLER G, FRISCHKNECHT F. Electrical methods in geophysical prospecting[M]. New York: Pergamon Press, 1966.
|
[25] |
OH T, CHO G, LEE C. Effect of soil mineralogy and pore-water chemistry on the electrical resistivity of saturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(11): 0601401211-1-06014012-5.
|
[1] | ZHONG Yu-qing, CAI Guang-hua, WANG Jun-ge, WANG Zhong, SONG Long-guang. Strength and electrical conductivity characteristics of zinc contaminated soil carbonated/stabilized with GGBS-reactive MgO[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 221-224. DOI: 10.11779/CJGE2021S2052 |
[2] | LIU Hong-fei, LIU Jun-fang, SU Yue-hong, JIN Yan. New method for dealing with unconfined compressive strength outliers[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 137-140. DOI: 10.11779/CJGE2020S1027 |
[3] | WANG Fei, XU Wang-qi. Strength and leaching performances of stabilized/solidified (S/S) and ground improved (GI) contaminated site soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1955-1961. DOI: 10.11779/CJGE202010022 |
[4] | ZHOU Cheng-jing, WANG Hong-xin, CHEN Qun, HE Chang-rong. Strength tests on clay-gypsum cementation materials[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 56-60. DOI: 10.11779/CJGE2015S1012 |
[5] | CAI Zheng-yin, WU Zhi-qiang, HUANG Ying-hao, CAO Yong-yong, WEI Yan-bing. Influence of water and salt contents on strength of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1580-1586. DOI: 10.11779/CJGE201409002 |
[6] | LIU Zhao-peng, DU Yan-jun, LIU Song-yu, JIANG Ning-jun, ZHU Jing-jing. Strength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. DOI: 10.11779/CJGE201403018 |
[7] | DING Jian-wen, LIU Tie-ping, CAO Yu-peng, YANG Rui-min, WANG Gang. Unconfined compression tests and strength prediction method for solidified soils of dredged clays with high water content[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 55-60. |
[8] | Unconfined Compressive Strength Properties of Cement Solidified/Stabilized Lead-Contaminated Soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. |
[9] | PENG Liyun, LIU Jiankun, TIAN Yahu, QIAN Chunxiang. Unconfined compression tests on thawing soil[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1338-1342. |
[10] | ZHUANG Xinshan, WANG Gongxun, ZHU Ruigeng, TIAN Bi. Experimental study on unconfined compressive strength of clays stabilized with fly ash and slag[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 965-969. |