Citation: | ZHONG Yu-qing, CAI Guang-hua, WANG Jun-ge, WANG Zhong, SONG Long-guang. Strength and electrical conductivity characteristics of zinc contaminated soil carbonated/stabilized with GGBS-reactive MgO[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 221-224. DOI: 10.11779/CJGE2021S2052 |
[1] |
CHEN Q Y, TYRER M, HILLS C D, et al. Immobilisation of heavy metal in cement-based solidification/ stabilisation: a review[J]. Waste Management, 2009, 29(1): 390-403. doi: 10.1016/j.wasman.2008.01.019
|
[2] |
VOGLAR G E, LEŠTAN D. Solidification/stabilisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 926-933.
|
[3] |
LIU J J, ZHA F S, XU L, et al. Strength and microstructure characteristics of cement-soda residue solidified/ stabilized zinc contaminated soil subjected to freezing- thawing cycles[J]. Cold Regions Science and Technology, 2020, 172: 102992. doi: 10.1016/j.coldregions.2020.102992
|
[4] |
曹菁菁. 活性氧化镁碳化固化土微观机理及应用研究[D]. 南京: 东南大学, 2016.
CAO Jing-jing. The Application and Micro-mechanism of Carbonated Reactive Magnesia Solidified Soils[D]. Nanjing: Southeast University, 2016. (in Chinese)
|
[5] |
陈金洪, 贺瑶瑶, 胡亚风. 粒化高炉矿渣-氧化镁固化连云港软土的力学特性试验[J]. 林业工程学报, 2019, 4(2): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201902022.htm
CHEN Jin-hong, HE Yao-yao, HU Ya-feng. Experimental study of mechanical and microstructural properties of Lianyungang soft soil solidified by granulated blast-furnace slag-magnesium oxide[J]. Journal of Forestry Engineering, 2019, 4(2): 133-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LKKF201902022.htm
|
[6] |
YI Y L, LISKA M, AL-TABBAA A. Properties and microstructure of GGBS-magnesia pastes[J]. Advances in Cement Research, 2014, 26(2): 114-122. doi: 10.1680/adcr.13.00005
|
[7] |
DU Y J, BO Y L, JIN F, et al. Durability of reactive magnesia-activated slag-stabilized low plasticity clay subjected to drying-wetting cycle[J]. European Journal of Environmental and Civil Engineering, 2016, 20(2): 215-230. doi: 10.1080/19648189.2015.1030088
|
[8] |
CAI G H, LIU S Y, DU Y J, et al. Strength and deformation characteristics of carbonated reactive magnesia treated silt soil[J]. Journal of Central South University, 2015, 22(5): 1859-1868. doi: 10.1007/s11771-015-2705-5
|
[9] |
刘松玉, 曹菁菁, 蔡光华. 活性氧化镁碳化固化粉质黏土微观机制[J]. 岩土力学, 2018, 39(5): 1543-1563. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805001.htm
LIU Song-yu, CAO Jing-jing, CAI Guang-hua. Micromechanism of carbonation and solidification of silty clay with activated magnesium oxide[J]. Rock and Soil Mechanics, 2018, 39(5): 1543-1552, 1563. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805001.htm
|
[10] |
YI Y L, LISKA M, AL-TABBAA A. Properties of two model soils stabilized with different blends and contents of GGBS, MgO, lime, and PC[J]. Journal of Materials in Civil Engineering, 2014, 26(2): 267-274. doi: 10.1061/(ASCE)MT.1943-5533.0000806
|
[11] |
薄煜琳. 粒化高炉矿渣和氧化镁固化稳定化铅污染黏土的强度、溶出及微观特性的研究[D]. 南京: 东南大学, 2015.
BO Yu-lin. The Strength, Leaching and Microscopic Mechanism of Ground Granulated Bast Furnace Slag and Magnesium Oxide Stabilized Lead-Contaminated Soils[D]. Nanjing: Southeast University, 2015. (in Chinese)
|