Citation: | LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534. |
[1] |
刘 洋. 砂土的各向异性强度准则:应力诱发各向异性[J]. (岩土工程学报), 2013, 35(3): 460-468.(LIU Yang. An anisotropic strength criteria of sand:Ⅰstress induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468. (in Chinese))
CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. J Boston Soc Civ Eng, 1944, 31(4): 74-87. ARTHUR J R F, MENZIES B K. Inherent anisotropy in sand[J]. Géotechnique, 1972, 22(1): 115-128. ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soils in the yield function[C]// Micromechanics of Granular Materials. Amsterdam, 1988: 81-90. DUNCAN J M, SEED H B. Strength variation along failure surfaces in clay[J]. J Geotech Eng Div ASCE, 1966, SM6: 81-104. YAMADA Y, ISHIHARA K. Anisotropic deformation characteristics of sand under three dimensional stress conditions[J]. Soil and Foundations, 1979, 19(2): 79-94. OCHIAI H, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. J Geotech Eng, 1983, 109(10): 1313-1328. MIURA S, TOKI S. Anisotropy in mechanical properties and its simulation of sands sampled from natural deposits[J]. Soil and Foundations, 1984, 24(3): 69-84. YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on drained shear behavior of sand[J]. Soil and Foundations, 1998, 38(3): 177-186. MASAD E, MUHUNTHAN B. Three-dimensional characterization and simulation of anisotropic soil fabric[J]. J Geotech Geoenviron Eng, 2000, 126(3): 199-207. ABELEV A V, LADE P V. Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding[J]. J Eng Mech, 2003, 129(2): 160-166. ABELEV A V, GUTTA S K, LADE P V,et al. Modeling cross anisotropy in granular materials[J]. J Eng Mech, 2007, 133(8): 919-932. HIGHT DW, GENS A, SYMES M J. The development of a new hollow cylinder appratus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383. TATSUOKA F, SAKAMOTO M, KAWAMURA T,et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures[J]. Soil and Foundations, 1986, 26(1): 65-84. TATSUOKA F, SONODA S, HARA K,et al. Failure and deformation of sand in torsional shear[J]. Soil and Foundations, 1986, 26(4): 79-97. PRADHAN T B S, TATSUOKA F, HORII N. Simple shear testing on sand in a torsional shear apparatus[J]. Soil and Foundations, 1988, 28(2): 95-112. LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesiveless soil[J]. ASCE, J Geotech Engng Div, 1975, 101(10): 1037-1053. LADE P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. Int J Solids Struct, 1977, 13(11): 1019-1035. MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proc Jpn Soc Civ Engrs. 1974, 232: 59-70. YAO Y P, LU D C, ZHOU A N,et al. Generalized non-linear strength theory and transformed stress space[J]. Sci China E: Tech Sci, 2004, 47(6): 691-709. MORTATA G. A new yield and failure criterion for geomaterials [J]. Géotechnique, 2008, 58(2):125-132. PIETRUSZCZAK S, MORZ Z. Formulation of anisotropic failure Criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112. SCHWEIGER H F, WILTAFSKY C, SCHARINGER F. A multilaminate framework for modelling induced and inherent anisotropy of soils[J]. Géotechnique, 2009, 59(2): 87-101. 张连卫, 张建民, 张 嘎. 基于 SMP 的粒状材料各向异性强度准则[J]. (岩土工程学报), 2008, 30(8): 1107-1111.(ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. (in Chinese)) 李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. (岩石力学与工程学报), 2010, 29(9): 1885-1892.(LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1892. (in Chinese)). CHRISTOFFERSON J, MEHRABADI M M, NEMAT- NASSAR S. A micromechanical description on granular material behavior[J]. ASME, Journal of Applied Mechanics, 1981, 48: 339-344. ROTHENBURG L, SELVADURAI A P S. Micromechanical definitions of the Cauchy stress tensor for particular media[C]// Mechanics of Structured Media Selvadurai. Amsterdam, 1981: 469-486. CHANG C S, GAO J. Kinematic and static hypotheses for constitutive modeling of granulates considering particle rotation[J]. Acta Mech, 1996, 115(1-4): 213-229. HIDETOSHI Ochia, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. Journal of Geotechnical Engineering, 1984, 109(10): 1313-1328. PAN Y W, DONG J J. A micromechanics-based methodology for evaluating the fabric of granular[J]. Géotechnique, 1999, 49(6): 761-775. BIAREZ J, HICHER P Y. Elementary mechanics of soil behavior[M]. Rotterdam: The Netherlands, 1994. LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soil[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(SM10): 793-812. |
[1] | LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005 |
[2] | WANG Li-qin, ZHAO Cong, HU Xiang-yang, LI Lun, WANG Zheng, LI Kai-yu. Strength and structural anisotropy of loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 25-29. DOI: 10.11779/CJGE2021S1005 |
[3] | WU Ze-xiang, CHEN Jia-ying, YIN Zhen-yu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020 |
[4] | DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018 |
[5] | ZHANG Kun-yong, LI Wei, LUO Xing-jun, CHARKLEY Nai Frederick. Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 518-524. DOI: 10.11779/CJGE201703016 |
[6] | ZHOU Jian, LIU Zheng-yi, YAN Jia-jia. Effects of inherent and induced anisotropies on strength and deformation characteristics of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 666-670. |
[7] | LIU Yang. Anisotropic strength criteria of sand: Stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468. |
[8] | C. W. W. Ng, LI Qing, LIU Guo-bin. Measurements of small-strain inherent stiffness anisotropy of intact Shanghai soft clay using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 150-156. |
[9] | Wang Hongjin, Zhang Guoping, Zhou Keji. Effects Of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10. |
[10] | Jiao Dequan, Chen Yujiong. Anisotropy and Volume-contraction of Soil due to Axial Unloading in CD Test[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 9-16. |