• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534.
Citation: LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534.

Anisotropic strength criteria of sand: inherent anisotropy

More Information
  • Received Date: January 06, 2013
  • Published Date: August 19, 2013
  • Inherent anisotropy strength of sand is analyzed on the particle level based on the micromechanics of granular. An inherent anisotropic strength criterion is proposed, which will be reduced to the inherent anisotropy M-C criteria if the evolution of the initial fabric is not considered. The classical failure criteria such as M-N and L-D criteria can be extended to the inherent anisotropy strength criterion in this way and no extra model parameters are needed. In this sense, the proposed model is easy for engineering application. Based on a simple fabric-stress relationship considering the effect of intermediate principal stress, a micromechanics-based inherent anisotropy strength criterion is developed to simulate the macro-mechanical response of real sand considering the evolution of the initial fabric and the effect of density state. Finally, true triaxial tests are chosen to compare the predicted results with the proposed criteria. The numerical results indicate that the proposed strength criterion, which has rational mechanism, presents an effective approach to analyze the inherent anisotropic strength characteristics of sand.
  • [1]
    刘 洋. 砂土的各向异性强度准则:应力诱发各向异性[J]. (岩土工程学报), 2013, 35(3): 460-468.(LIU Yang. An anisotropic strength criteria of sand:Ⅰstress induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468. (in Chinese))
    CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. J Boston Soc Civ Eng, 1944, 31(4): 74-87.
    ARTHUR J R F, MENZIES B K. Inherent anisotropy in sand[J]. Géotechnique, 1972, 22(1): 115-128.
    ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soils in the yield function[C]// Micromechanics of Granular Materials. Amsterdam, 1988: 81-90.
    DUNCAN J M, SEED H B. Strength variation along failure surfaces in clay[J]. J Geotech Eng Div ASCE, 1966, SM6: 81-104.
    YAMADA Y, ISHIHARA K. Anisotropic deformation characteristics of sand under three dimensional stress conditions[J]. Soil and Foundations, 1979, 19(2): 79-94.
    OCHIAI H, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. J Geotech Eng, 1983, 109(10): 1313-1328.
    MIURA S, TOKI S. Anisotropy in mechanical properties and its simulation of sands sampled from natural deposits[J]. Soil and Foundations, 1984, 24(3): 69-84.
    YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on drained shear behavior of sand[J]. Soil and Foundations, 1998, 38(3): 177-186.
    MASAD E, MUHUNTHAN B. Three-dimensional characterization and simulation of anisotropic soil fabric[J]. J Geotech Geoenviron Eng, 2000, 126(3): 199-207.
    ABELEV A V, LADE P V. Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding[J]. J Eng Mech, 2003, 129(2): 160-166.
    ABELEV A V, GUTTA S K, LADE P V,et al. Modeling cross anisotropy in granular materials[J]. J Eng Mech, 2007, 133(8): 919-932.
    HIGHT DW, GENS A, SYMES M J. The development of a new hollow cylinder appratus for investigating the effects of principal stress rotation in soils[J]. Géotechnique, 1983, 33(4): 355-383.
    TATSUOKA F, SAKAMOTO M, KAWAMURA T,et al. Strength and deformation characteristics of sand in plane strain compression at extremely low pressures[J]. Soil and Foundations, 1986, 26(1): 65-84.
    TATSUOKA F, SONODA S, HARA K,et al. Failure and deformation of sand in torsional shear[J]. Soil and Foundations, 1986, 26(4): 79-97.
    PRADHAN T B S, TATSUOKA F, HORII N. Simple shear testing on sand in a torsional shear apparatus[J]. Soil and Foundations, 1988, 28(2): 95-112.
    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesiveless soil[J]. ASCE, J Geotech Engng Div, 1975, 101(10): 1037-1053.
    LADE P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. Int J Solids Struct, 1977, 13(11): 1019-1035.
    MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proc Jpn Soc Civ Engrs. 1974, 232: 59-70.
    YAO Y P, LU D C, ZHOU A N,et al. Generalized non-linear strength theory and transformed stress space[J]. Sci China E: Tech Sci, 2004, 47(6): 691-709.
    MORTATA G. A new yield and failure criterion for geomaterials [J]. Géotechnique, 2008, 58(2):125-132.
    PIETRUSZCZAK S, MORZ Z. Formulation of anisotropic failure Criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112.
    SCHWEIGER H F, WILTAFSKY C, SCHARINGER F. A multilaminate framework for modelling induced and inherent anisotropy of soils[J]. Géotechnique, 2009, 59(2): 87-101.
    张连卫, 张建民, 张 嘎. 基于 SMP 的粒状材料各向异性强度准则[J]. (岩土工程学报), 2008, 30(8): 1107-1111.(ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111. (in Chinese))
    李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. (岩石力学与工程学报), 2010, 29(9): 1885-1892.(LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1892. (in Chinese)).
    CHRISTOFFERSON J, MEHRABADI M M, NEMAT- NASSAR S. A micromechanical description on granular material behavior[J]. ASME, Journal of Applied Mechanics, 1981, 48: 339-344.
    ROTHENBURG L, SELVADURAI A P S. Micromechanical definitions of the Cauchy stress tensor for particular media[C]// Mechanics of Structured Media Selvadurai. Amsterdam, 1981: 469-486.
    CHANG C S, GAO J. Kinematic and static hypotheses for constitutive modeling of granulates considering particle rotation[J]. Acta Mech, 1996, 115(1-4): 213-229.
    HIDETOSHI Ochia, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. Journal of Geotechnical Engineering, 1984, 109(10): 1313-1328.
    PAN Y W, DONG J J. A micromechanics-based methodology for evaluating the fabric of granular[J]. Géotechnique, 1999, 49(6): 761-775.
    BIAREZ J, HICHER P Y. Elementary mechanics of soil behavior[M]. Rotterdam: The Netherlands, 1994.
    LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soil[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(SM10): 793-812.
  • Related Articles

    [1]LIU Bing-heng, KONG Ling-wei, SHU Rong-jun, LI Tian-guo, JIAN Tao. Characteristics of small-strain shear modulus of Zhanjiang clay under influence of inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 19-22. DOI: 10.11779/CJGE2021S2005
    [2]WANG Li-qin, ZHAO Cong, HU Xiang-yang, LI Lun, WANG Zheng, LI Kai-yu. Strength and structural anisotropy of loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 25-29. DOI: 10.11779/CJGE2021S1005
    [3]WU Ze-xiang, CHEN Jia-ying, YIN Zhen-yu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020
    [4]DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
    [5]ZHANG Kun-yong, LI Wei, LUO Xing-jun, CHARKLEY Nai Frederick. Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 518-524. DOI: 10.11779/CJGE201703016
    [6]ZHOU Jian, LIU Zheng-yi, YAN Jia-jia. Effects of inherent and induced anisotropies on strength and deformation characteristics of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 666-670.
    [7]LIU Yang. Anisotropic strength criteria of sand: Stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468.
    [8]C. W. W. Ng, LI Qing, LIU Guo-bin. Measurements of small-strain inherent stiffness anisotropy of intact Shanghai soft clay using bender elements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1): 150-156.
    [9]Wang Hongjin, Zhang Guoping, Zhou Keji. Effects Of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10.
    [10]Jiao Dequan, Chen Yujiong. Anisotropy and Volume-contraction of Soil due to Axial Unloading in CD Test[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 9-16.

Catalog

    Article views (430) PDF downloads (391) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return