• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Yang. Anisotropic strength criteria of sand: Stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468.
Citation: LIU Yang. Anisotropic strength criteria of sand: Stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 460-468.

Anisotropic strength criteria of sand: Stress-induced anisotropy

More Information
  • Received Date: June 14, 2012
  • Published Date: March 24, 2013
  • Stress-induced anisotropic strength of sand is analyzed on the particle level based on the micromechanics of granular. The differences between the isotropic strength and the stress-induced anisotropic strength are discussed from the viewpoint of micro-mechanism. Three classical strength theories, namely, M-C, M-N, L-D criteria, are discussed from the aspect of stress-induced anisotropy. Based on different anisotropies developed under triaxial compression and triaxial tensile stress condition, a simple fabric-stress relationship is proposed considering the effect of intermediate principal stress. A micromechanics-based stress-induced anisotropy strength criterion is developed to simulate the macro-mechanical response of real sand considering the effect of density state. Finally, several sets of true triaxial tests are chosen to be compared with the predicted results from the proposed strength criterion. The numerical results indicate that the proposed strength criterion, whose parameters have clear physical meanings, presents an effective approach to analyze the induced anisotropic strength characteristics of sand from the microscopic mechanism.
  • [1]
    CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. J Boston Soc Civ Eng, 1944,31(4):74-87.
    [2]
    ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soils in the yield function[C]// Micromechanics of Granular Materials. Satake, Jenkins J T,eds, Amsterdam:1988: 81-90.
    [3]
    YAMADA Y, ISHIHARA K. Anisotropic deformation characteristics of sand under three dimensional stress conditions[J]. Soils and Found, 1979,19(2):79-94.
    [4]
    ODA M. Anisotropic strength of cohesionless sands[J]. J Geotech Engrg Div, 1981,107(9):1219-1231.
    [5]
    OCHIAI H, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. J Geotech Eng, 1983,109(10):1313-1328.
    [6]
    YOSHIMINE M, ISHIHARA K, VARGAS W. Effects of principal stress direction and intermediate principal stress on drained shear behavior of sand[J]. Soils and Found, 1998,38(3):177-186.
    [7]
    MASAD E, MUHUNTHAN B. Three-dimensional characterization and simulation of anisotropic soil fabric[J]. J Geotech Geoenviron Eng, 2000,126(3):199-207.
    [8]
    ABELEV A V, LADE P V. Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding[J]. J Eng Mech, 2003,129(2):160-166.
    [9]
    ABELEV A V, GUTTA S K, LADE P V, YAMAMURO J A. Modeling cross anisotropy in granular materials[J]. J Eng Mech, 2007,133(8):919-932.
    [10]
    PIETRUSZCZAK S, MORZ Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000,26(2):105-112.
    [11]
    SCHWEIGER H F, WILTAFSKY C, SCHARINGER F. A multilaminate framework for modelling induced and inherent anisotropy of soils[J]. Géotechnique, 2009,59(2):87-101.
    [12]
    张连卫,张建民,张 嘎. 基于 SMP 的粒状材料各向异性强度准则[J]. 岩土工程学报, 2008,30(8):1107-1111. (ZHANG Lian-wei, ZHANG Jian-min, ZHANG Ga. SMP- based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8)
    [13]
    李学丰,黄茂松,钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010,29(9):1885-1892. (LI Xue-feng, HUANG Mao-song, QIAN Jian-gu.
    Failure Criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1892.( in Chinese))
    [14]
    ARTHUR. J R F, MENZIES B K. Inherent anisotropy in sand[J]. Géotechnique, 1972,22(1):115-128.
    [15]
    ODA M. Initial fabrics and their relations to mechanical properties of granular materials[J]. Soils and Foundations, 1972,12(1):17-36.
    [16]
    ODA M Konishi. Microscopic deformation mechanism of granular materials[J]. Soils and Foundations, 1974,14(4):25-38.
    [17]
    ODA M, NAKAYAMA H. Yield function for soil with anisotropic fabric[J]. J Eng Mech 1989, ASCE,115(1):89-104.
    [18]
    MUHUNTHAN B, CHAMEAU J L. Void fabric tensor and ultimate state surface of soils[J]. J Geotech Geoenvir Eng, ASCE,1997, 123(2):173-181.
    [19]
    PIETRUSZCZAK S, LYDZBA D, SHAO J F. Modelling of inherent anisotropy in sedimentary rocks[J]. Int J Solids Struct, 2002,39:637-648.
    [20]
    SHEN Zhu-jiang. A granular medium model for liquefaction analysis of sands[J]. Chinese Journal of Geotechnical Engineering, 1999,21(6):742-748.
    [21]
    ODA M. Similarity rule of crack geometry in statistically homogeneous rock masses[J]. Mech Mater, 1984,3(2):119-129.
    [22]
    PIETRUSZCZAK S, MROZ Z. On failure criteria for anisotropic cohesive-frictional materials[J]. Int J Numer Anal Meth Geomech, 2001,25(5):509-524.
    [23]
    CHANG And MISRA. Packing structure and mechanical properties of granulates [J]. Journal of Engineering Mechanics Division, ASCE,1990, 116(5):1077-1093.
    [24]
    CHRISTOFFERSON J, MEHRABADI M M, NEMAT- NASSAR S. A micromechanical description on granular material behavior[J]. ASME, Journal of Applied Mechanics,1981, 48:339-344.
    [25]
    ROTHENBURG L, SELVADURAI A P S. Micromechanical definitions of the Cauchy stress tensor for particular media[C]// Mechanics of Structured Media. Selvadurai A P S, ed. Amsterdam,1981:469-486.
    [26]
    CHANG C S, GAO J. Kinematic and static hypotheses for constitutive modeling of granulates considering particle rotation[J]. Acta Mech, 1996,115(1/2/3/4):213-229.
    [27]
    ROTHENBURG L, BATHURST R J. Analytical study of induced anisotropy in idealized granular materials[J]. Géotechnique, 1989,39(4):601-614.
    [28]
    刘 洋,吴顺川,周 健. 单调荷载下砂土变形过程数值模拟及细观机理研究[J]. 岩土力学, 2008,29(12):3199-3204. (LIU Yang, WU Shun-chuan, ZHOU Jian. Numerical simulation of sand deformation under monotonic loading and mesomechanical analysis[J]. Rock and Soil Mechanics, 2008, 29(12)
    [29]
    BISHOP A W. The strength of soils as engineering materials[J]. Géotechnique, 1966,16(2):91-130.
    [30]
    LADE P V, WANG Q. Analysis of shear banding in true triaxial tests on sand[J]. Journal of Engineering Mechanics, 2001,128(8):762-768.
    [31]
    MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proc Jpn Soc Civ Engrs, 1974,232:59-70.
    [32]
    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesiveless soil[J]. ASCE J Geotech Engng Div, 1975,101(10):1037-1053.
    [33]
    LADE P V, DUNCAN J M. Cubical triaxial tests on cohesionless soil[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1973, 99(SM10):793-812.
    [34]
    HIDETOSHi Ochia, LADE P V. Three-dimensional behavior of sand with anisotropic fabric[J]. Journal of Geotechnical Engineering, 1984,109(10):1313-1328.
    [35]
    YAMADA, ISHIHARA K. Anisotropic deformation of sand under three-dimensional stress conditions[J]. Soils and Foundations, 1979,19(2):79-94.
    [36]
    LADE P V, MUSANTE H M. Three-dimensional behavior of remolded clay[J]. J Geotech Eng Div, 1978,104(GT2):193-209.
    [37]
    BIAREZ J, HICHER P Y. Elementary mechanics of soil behavior[M]. Rotterdam: The Netherlands, 1994.
  • Related Articles

    [1]WANG Li-qin, ZHAO Cong, HU Xiang-yang, LI Lun, WANG Zheng, LI Kai-yu. Strength and structural anisotropy of loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 25-29. DOI: 10.11779/CJGE2021S1005
    [2]DONG Tong, ZHENG Ying-ren, KONG Liang, ZHE Mei. Strength criteria and slipping planes of anisotropic sand considering direction of major principal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 736-742. DOI: 10.11779/CJGE201804018
    [3]YUAN Ran, YANG Wen-bo, YU Hai-Sui, ZHOU Bo. Effects of non-coaxiality and soil anisotropy on tunneling-induced subsurface settlements[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 673-680. DOI: 10.11779/CJGE201804011
    [4]YUAN Jun-ping, LIN Yan-ling, DING Peng, HAN Chun-lei. Influence of anisotropy induced by fissures on rainfall infiltration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 76-82. DOI: 10.11779/CJGE201601007
    [5]QI Yang, TANG Xin-jun, LI Xiao-qing. Stress-induced anisotropy of coarse-grained soil by true triaxial tests based on PFC[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2292-2300. DOI: 10.11779/CJGE201512020
    [6]ZHOU Jian, LIU Zheng-yi, YAN Jia-jia. Effects of inherent and induced anisotropies on strength and deformation characteristics of soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 666-670.
    [7]LIU Yang. Anisotropic strength criteria of sand: inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534.
    [8]ZHANG Lianwei, ZHANG Jianmin, ZHANG Ga. SMP-based anisotropic strength criteria of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1107-1111.
    [9]Wang Hongjin, Zhang Guoping, Zhou Keji. Effects Of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(3): 1-10.
    [10]Jiao Dequan, Chen Yujiong. Anisotropy and Volume-contraction of Soil due to Axial Unloading in CD Test[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(4): 9-16.

Catalog

    Article views (938) PDF downloads (726) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return