• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Ze-xiang, CHEN Jia-ying, YIN Zhen-yu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020
Citation: WU Ze-xiang, CHEN Jia-ying, YIN Zhen-yu. Finite element simulation of simple shear tests considering inherent anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1157-1165. DOI: 10.11779/CJGE202106020

Finite element simulation of simple shear tests considering inherent anisotropy

More Information
  • Received Date: September 03, 2020
  • Available Online: December 02, 2022
  • The absence of complementary shear stress on the side boundary of a specimen in the simple shear tests will cause stress inhomogeneity. An enhanced critical state-based constitutive model is proposed by incorporating the inherent anisotropy fabric, and also implemented into the finite element code for the numerical simulation. In addition, a three-dimensional finite element analysis with the same size as the GDS-type simple shear apparatus is performed to illustrate the inhomogeneous features of the specimen. Above all, this study can improve the understanding and knowledge of boundary effects for the simple shear tests, and provide a calculation method for analyzing the inhomogeneous ness of the specimen.
  • [1]
    DABEET A, Discrete Element Modeling of Direct Simple Shear Response of Granular Soils and Model Validation Using Laboratory Tests[D]. Vancouver: University of British Columbia, 2014.
    [2]
    WIJEWICKREME D, SRISKANDAKUMAR S, BYRNE P. Cyclic loading response of loose air-pluviated Fraser River sand for validation of numerical models simulating centrifuge tests[J]. Canadian Geotechnical Journal, 2005, 42(2): 550-561. doi: 10.1139/t04-119
    [3]
    BUDHU M. Nonuniformities imposed by simple shear apparatus[J]. Canadian Geotechnical Journal, 1984, 21(1): 125-137. doi: 10.1139/t84-010
    [4]
    WANG B, POPESCU R, PREVOST J H. Effects of boundary conditions and partial drainage on cyclic simple shear test results—a numerical study[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(10): 1057-1082. doi: 10.1002/nag.377
    [5]
    GROGNET M. The Boundary Conditions in Direct Simple Shear Tests: Developments for Peat Testing at Low Normal Stress[M]. Delft: Delft University of Technology, 2011.
    [6]
    DOHERTY J, FAHEY M. Three-dimensional finite element analysis of the direct simple shear test[J]. Computers and Geotechnics, 2011, 38(7): 917-924. doi: 10.1016/j.compgeo.2011.05.005
    [7]
    程马遥, 金银富, 尹振宇, 等. 改进DE-TMCMC法及其在高级模型参数识别上的应用[J]. 岩土工程学报, 2019, 41(12): 2281-2289. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912020.htm

    CHENG Ma-yao, JIN Yin-fu, YIN Zhen-yu, et al. Improved DE-TMCMC method and its application in high-level model parameter identification[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2281-2289. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201912020.htm
    [8]
    吴则祥, 金银富, 季慧, 等. 易破碎砂土地基中“平底桩”贯入数值模拟分析[J]. 岩土力学, 2017, 38(增刊2): 330-336. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2050.htm

    WU Ze-xiang, JIN Yin-fu, JI Hui, et al. Numerical simulation analysis of "flat-bottomed pile" penetration in easily broken sand foundation[J]. Rock and Soil Mechanics, 2017, 38(S2): 330-336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2050.htm
    [9]
    JIN Y F, WU Z X, YIN Z Y, et al. Estimation of critical state-related formula in advanced constitutive modeling of granular material[J]. Acta Geotechnica, 2017: 1-23.
    [10]
    WU Z X, YIN Z Y, JIN Y F, et al. A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis[J]. European Journal of Environmental and Civil Engineering, 2017: 1-23.
    [11]
    YIN Z Y, JIN Z, KOTRONIS P, et al. Novel SPH SIMSAND-based approach for modeling of granular collapse[J]. International Journal of Geomechanics, 2018, 18(11).
    [12]
    YAO Y P, KONG Y X. Extended UH model: Three- dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2011, 138(7): 853-866.
    [13]
    GAO Z, ZHAO J. A non-coaxial critical-state model for sandaccounting for fabric anisotropy and fabric evolution[J]. International Journal of Solids and Structures, 2017, 106: 200-212.
    [14]
    GAO Z, ZHAO J. Efficient approach to characterize strength anisotropy in soils[J]. Journal of Engineering Mechanics, 2012, 138(12): 1447-1456. doi: 10.1061/(ASCE)EM.1943-7889.0000451
    [15]
    ODA M, NAKAYAMA H. Yield function for soil with anisotropic fabric[J]. Journal of Engineering Mechanics, 1989, 115(1): 89-104. doi: 10.1061/(ASCE)0733-9399(1989)115:1(89)
    [16]
    WANG C C. A new representation theorem for isotropic functions: an answer to Professor GF Smith's criticism of my papers on representations for isotropic functions[J]. Archive for Rational Mechanics and Analysis, 1970, 36(3): 166-197. doi: 10.1007/BF00272241
    [17]
    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868-880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
    [18]
    PIETRUSZCZAK S, MROZ Z. Formulation of anisotropic failure criteria incorporating a microstructure tensor[J]. Computers and Geotechnics, 2000, 26(2): 105-112. doi: 10.1016/S0266-352X(99)00034-8
    [19]
    PIETRUSZCZAK S, MROZ Z. On failure criteria for anisotropic cohesive‐frictional materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(5): 509-524. doi: 10.1002/nag.141
    [20]
    VAID Y, SIVATHAYALAN S. Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests[J]. Canadian Geotechnical Journal, 1996, 33(2): 281-289. doi: 10.1139/t96-007
    [21]
    YANG Y, YU H. A non‐coaxial critical state soil model and its application to simple shear simulations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(13): 1369-1390. doi: 10.1002/nag.531
    [22]
    YANG Y, YU H. Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(1): 1-19. doi: 10.1002/nag.468
    [23]
    YANG Y, YU H-S. Numerical aspects of non-coaxial model implementations[J]. Computers and Geotechnics, 2010, 37(1): 93-102.
    [24]
    Hibbitt, Karlsson, Sorensen. ABAQUS/Explicit: User's Manual[R]. Vol. 1. Providence: Dassault Systemes Simulia Corp, 2001.
    [25]
    李舰, 蔡国庆, 尹振宇. 适用于弹黏塑性本构模型的修正切面算法[J]. 岩土工程学报, 2020, 42(2): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002008.htm

    LI Jian, CAI Guo-qing, YIN Zhen-yu. Modified section algorithm for elasto-viscoplastic constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 253-259. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002008.htm
    [26]
    杨杰, 尹振宇, 黄宏伟, 等. 面向边界面模型的切面算法扩展[J]. 岩土力学, 2017, 38(12): 3436-3444. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712006.htm

    YANG Jie, YIN Zhen-yu, HUANG Hong-wei, et al. Extension of tangent surface algorithm for boundary surface model[J]. Rock and Soil Mechanics, 2017, 38(12): 3436-3444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201712006.htm
    [27]
    ANDRIA-NTOANINA I, CANOU J, DUPLA J. Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone[J]. Laboratoire Navier-Géotechnique. CERMES, ENPC/LCPC, 2010.
    [28]
    GAUDIN C, SCHNAID F, GARNIER J. Sand characterization by combined centrifuge and laboratory tests[J]. International Journal of Physical Modelling in Geotechnics, 2005, 5(1): 42-56. doi: 10.1680/ijpmg.2005.050104
    [29]
    JIN Y F, YIN Z Y, SHEN S L, et al. Selection of sand models and identification of parameters using an enhanced genetic algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(8): 1219-1240.
    [30]
    JIN Y F, YIN Z Y, SHEN S L, et al. Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[J]. Acta Geotechnica, 2016, 11(5): 1131-1145.
    [31]
    JIN Y F, YIN Z Y, SHEN S L, et al. A new hybrid real-coded genetic algorithm and its application to parameters identification of soils[J]. Inverse Problems in Science and Engineering, 2016: 1-24.
    [32]
    BUDHU M. Failure state of a sand in simple shear[J]. Canadian Geotechnical Journal, 1988, 25(2): 395-400.

Catalog

    Article views (291) PDF downloads (308) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return