• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Kun-yong, LI Wei, LUO Xing-jun, CHARKLEY Nai Frederick. Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 518-524. DOI: 10.11779/CJGE201703016
Citation: ZHANG Kun-yong, LI Wei, LUO Xing-jun, CHARKLEY Nai Frederick. Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 518-524. DOI: 10.11779/CJGE201703016

Numerical experiments of microscopic mechanism of inherent anisotropy for sand based on PFC2D

More Information
  • Received Date: January 04, 2016
  • Published Date: April 24, 2017
  • Through numerical simulation based on the particle flow method, DEM numerical test samples are generated in accordance with the results of laboratory tests on standard sand. Using gravity deposition modelling of irregular sand particles, samples of biaxial test assembled by long particle units are generated. Different steps of deposition are applied during the process of generating samples in order to simulate different inherent states of samples. The loads from the horizontal and vertical directions are respectively applied to samples. The numerical experimental results show that the gravitational deposits have significant impact on the major axis orientation arrangement of particles and the average coordination number. Also, there is a change in the macroscopic stress-strain curve and mechanical parameters acquired from the results of applying loads to the samples from the horizontal and vertical directions. The tested sand samples exhibit inherent mechanical anisotropy, which is closely associated with the internal structure properties and microscopic mechanical properties of sand.
  • [1]
    ARTHUR J R F, et al. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [2]
    张坤勇. 考虑应力各向异性土体本构模型及应用研究[D].南京: 河海大学, 2004. (ZHANG Kun-yong. Study and application on soil's constitutive model with the consideration of stress-induced anisotropy[D]. Nanjing: Hohai University, 2004. (in Chinese))
    [3]
    ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25-38.
    [4]
    PENNINGTON D S, NASH D, LINGS M L. Anisotropy of G 0 shear stiffness in Gault Clay[J]. Géotechnique, 1997, 47(3): 391-398.
    [5]
    宋 飞. 考虑侧向变形的各向异性填土土压力计算方法及试验研究[D]. 北京: 清华大学, 2009. (SONG Fei. Evaluation and experimental study of earth pressure for anisotropic sand under any lateral deformation[D]. Beijing: Tsinghua University, 2009. (in Chinese))
    [6]
    张坤勇, 殷宗泽, 徐志伟. 土体各向异性的再认识[J]. 岩土工程技术, 2004, 18(1): 1-4. (ZHANG Kun-yong, YIN Zong-ze, XU Zhi-wei. Re-recognition of the soil's anisotrophy[J]. Geotechnical Engineering Technique, 2004, 18(1): 1-4. (in Chinese))
    [7]
    张坤勇, 殷宗泽, 梅国雄. 土体两种各向异性的区别与联系[J]. 岩石力学与工程, 2005, 24(9): 1599-1604. (ZHANG Kun-yong, YIN Zong-ze, MEI Guo-xiong. Difference and connection of two kinds of anisotropy of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(9): 1599-1604. (in Chinese))
    [8]
    CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock systems[C]// Proceeding of Symposium of the International Society for Rock Mechanics. Nancy, 1971.
    [9]
    王永嘉, 邢纪波. 离散元法及其在岩土力学中的应用[M]. 辽宁: 东北大学出版社, 1991. (WANG Yong-jia, XING Ji-bo. Discrete element method and its applications in geomechanic[M]. Liaoning: Northeastern University Press, 1991. (in Chinese))
    [10]
    PROCOPIO A T, ZAVALIANGOS A. Simulation of multi-axial compaction of granular media from loose to high relative densities[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(7): 1523-1551.
    [11]
    池 永. 土的工程力学性质的细观研究-应力应变关系剪切带的颗粒流模拟[D]. 上海: 同济大学, 2002. (CHI Yong. A study of the mechanical properties of the soil a simulation of the particle flow in the shear zone of the stress-strain relationship[D]. Shanghai: Tongji University, 2002. (in Chinese))
    [12]
    周 健, 杨永香, 刘 洋. 饱和砂土液化过程中细观组构的模型试验研究[J]. 同济大学学报(自然科学版), 2009, 37(4): 466-470. (ZHOU Jian, YANG Yong-xiang, LIU Yang. Model testing of meso-fabric of saturated sand liquefaction[J]. Journal of Tongji University(Natural Science), 2009, 37(4): 466-470. (in Chinese))
    [13]
    李立青, 蒋明镜, 吴晓峰. 椭圆形颗粒堆积体模拟颗粒材料力学性能的离散元数值方法[J]. 岩土力学, 2011, 32(增刊1): 713-718. (LI Li-qing, JIANG Ming-jing, WU Xiao-feng. A developed discrete element model NS2D for simulating mechanical properties of elliptical particles assemblages[J]. Rock and Soil Mechanics, 2011, 32(S1): 713-718. (in Chinese))
    [14]
    蒋明镜, 彭 镝, 申志福, 等. 深海能源土剪切带形成机理离散元分析[J]. 岩土工程学报, 2013, 35(10): 1-7. (JIANG Ming-jing, PENG Di, SHEN Zhi-fu, et al. DEM analysis on formation of shear band of methane hydrate bearing soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1-7. (in Chinese))
    [15]
    童朝霞, 周 敏, 张连卫, 等. 各向异性颗粒材料双轴压缩试验的离散元数值模拟[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4227-4232. (TONG Chao-xia, ZHOU Min, ZHANG Lian-wei, et al. Numerical modelling of biaxial compression tests for granular materials with inherent anisotropy using DEM[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4227-4232. (in Chinese))
    [16]
    史旦达. 单调与循环加荷条件下砂土力学性质细观模拟[D]. 上海: 同济大学, 2007. (SHI Dan-da. Micromechanical simulations of sand behavior under monotonic and cyclic loading[D]. Shanghai: Tongji University, 2007. (in Chinese))

Catalog

    Article views (526) PDF downloads (431) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return