• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing:review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180.
Citation: YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing:review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180.

Constitutive relations for granular materials considering particle crushing:review and development

More Information
  • Received Date: November 14, 2011
  • Published Date: December 24, 2012
  • Particle crushing often results in more compressibility and less strength for granular assemblies. Therefore, the researches on the influences of particle crushing on the mechanical behavior of soils are important. First, experimental studies are summarized, including the descriptive methods for particle crushing and the impact of breakage on the stress-strain relationship under different loading conditions (one-dimensional and isotropic compression, triaxial shearing, torsional and simple shearing, etc.). Then, different modeling methods are summarized compression model, three-dimensional model and discrete element method-based modeling. Finally, through experimental investigations and the authors' researches in recent years, it is noted that the modified relative breakage index can be well adopted to represent the change of grain size distribution due to particle crushing during stress-straining. This index can be determined by using plastic work which has advantages for the condition of cyclic loadings. Then by using this index to determine the position of the critical state line (CSL), the influences of particle crushing on mechanical behavior can be estimated comparing the position of CSL with the current stress state. All the proposed constitutive equations relating to the modified relative breakage index can be directly applied to developing constitutive models under both monotonic and cyclic loadings.
  • [1]
    黄文竞. 高应力条件下天然石英砂的颗粒破碎机理[J]. 中国水运(学术版), 2007, 7(5): 28–29. (HUANG Wen-jing. Under high stress condition natural quartz sand pellet kill mechanism[J]. China Water Transport (Academic Version), 2007, 7(5): 28–29. (in Chinese))
    [2]
    张家铭, 蒋国盛, 汪 稔, 等. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043–2048. (ZHANG Jia-ming, JIANG Guo-sheng, WANG Ren, et al. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043–2048. (in Chinese))
    [3]
    刘崇权, 汪 稔, 吴新生, 等. 钙质砂物理力学性质试验中的几个问题[J]. 岩石力学与工程学报, 1999, 18(2): 209–212. (LIU Chong-quan, WANG Ren, WU Xin-sheng, et al. Some problems for the tests of physico-mechanical properties of calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 209–212. (in Chinese))
    [4]
    HU W. Contribution a l’etude de l’effet d’echelle dans les materiaux granulaires[D]. Nantes: Ecole Centrale de Nantes, 2009. (HU W. Contribution to the scale effect of granular materials[D]. Nantes: Central University of Nantes, 2009. (in French))
    [5]
    LEE K L, FARHOOMAND I. Compressibility and crushing of granular soil in anisotropic triaxial compression[J]. Canadian Geotechnical Journal, 1967, 4(1): 68–86.
    [6]
    MCDOWELL G R. On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139–145
    [7]
    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157–163.
    [8]
    MARSAL R J. Large-scale testing of rockfills materials[J]. Journal of the soil mechanics and foundation engineering ASCE, 1967, 93(2): 27–44.
    [9]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering ASCE, 1985, 111(10): 1177–1192.
    [10]
    LADE P V, YAMAMURO J A, BOPP P A. Significance of particle crushing in granular materials[J]. Journal of Geotechnical Engineering ASCE, 1996, 122(4): 309–316.
    [11]
    BIAREZ J, HICHER P Y. Influence de la granulométrie et de son evolution par ruptures de grains sur le comportement mécanique de matériaux granulaires[J]. Revue Fran?aise de Génie Civil, 1997, 1(4): 607–631. (BIAREZ J, HICHER P Y. Influence of grading and grain breakage induced grading change on the mechanical behavior of granular materials[J]. French Journal of Civil Engineering, 1997, 1(4): 607–631. (in French))
    [12]
    NAKATA Y, HYDE A F L, HYODO M, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567–583.
    [13]
    EINAV I. Breakage mechanics-part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274–1297.
    [14]
    MUIR WOOD D, MAEDA K. Changing grading of soil: effect on critical state[J]. Acta Geotechnica, 2008, 3(1): 3–14.
    [15]
    VALDES J R, KOPRULU E. Internal stability of crushed sands: Experimental study[J]. Géotechnique, 2008, 58(8): 615–622.
    [16]
    常 俊, 陈新民, 吕 杨. 高应力条件下南京砂破碎特性的试验[J]. 南京工业大学学报(自然科学版), 2008, 30(4): 88–92. (CHANG Jun, CHEN Xin-min, Lü Yang. Experiment on particle crush mechanism of Nanjing Sand under high stress[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2008, 30(4): 88–92. (in Chinese))
    [17]
    张季如, 祝 杰, 黄文竞, 等. 侧限压缩下石英砂砾的颗粒破碎特性及其分形描述[J]. 岩土工程学报, 2008, 30(6): 783–789. (ZHANG Ji-ru, ZHU Jie, HUANG Wen-jing, et al. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783–789. (in Chinese))
    [18]
    HYODO M, HYDE A F L, ARAMAKI N, et al. Undrained monotonic and cyclic shear behaviour of sand under low and high confining stresses[J]. Soils and Foundations, 2002, 42(3): 63–76.
    [19]
    DONOHUE S, O'SULLIVAN C, LONG M. Particle breakage during cyclic triaxial loading of a carbonate sand[J]. Géotechnique, 2009, 59(5): 477–482.
    [20]
    INDRARATNA B, VINOD J S, LACKENBY J. Influence of particle breakage on the resilient modulus of railway ballast[J]. Géotechnique, 2009, 59(7): 643–646.
    [21]
    KARIMPOUR H, LADE P V. Time Effects Relate to Crushing in Sand[J]. J. Geotech and Geoenvir Engrg, 2010, 136(9): 1209–1219.
    [22]
    刘汉龙, 秦红玉, 高玉峰, 等. 堆石粗粒料颗粒破碎试验研究[J]. 岩土力学, 2005, 26(4): 562–566. (QIN Hong-yu, GAO Yu-Feng, ZHOU Yun-dong, et al. Experimental study on particle breakage of rockfill and coarse aggregates[J]. Rock and Soil Mechanics, 2005, 26(4): 562–566. (in Chinese))
    [23]
    杨 光, 张丙印, 于玉贞, 等. 不同应力路径下粗粒料的颗粒破碎试验研究[J]. 水利学报, 2010, 41(3): 338–342. (YANG Guang, ZHANG Bing-yin, YU Yu-zhen, et al. An experimental study on particle breakage of coarse-grained materials under various stress paths[J]. Journal of Hydraulic Engineering, 2010, 41(3): 338–342. (in Chinese))
    [24]
    TARANTINO A, HYDE A F L. An experimental investigation of work dissipation in crushable materials[J]. Géotechnique, 2005, 55(8): 575–584.
    [25]
    YANG Z X, JARDINE R J, ZHU B T, et al. Sand grain crushing and interface shearing during displacement pile installation in sand[J]. Géotechnique, 2010, 60(6): 469–482.
    [26]
    周 杰, 周国庆, 赵光思, 等. 高应力下剪切速率对砂土抗剪强度影响研究[J]. 岩土力学, 2010, 31(9): 2805–2810. (ZHOU Jie, ZHOU Guo-qing, ZHAO Guang-si, et al. Analysis of influence of shear rate on shear strength of sand under high stress[J]. Rock and soil mechanics, 2010, 31(9): 2805–2810. (in Chinese))
    [27]
    PESTANA J M, WHITTLE A J. Compression model for cohesionless soils[J]. Géotechnique, 1995, 45(4): 611–631.
    [28]
    SHENG D, YAO Y P, CARTER J P. A volume-stress model for sands under isotropic and critical stress states[J]. Canadian Geotechnical Journal, 2008, 45(11): 1639–1645.
    [29]
    SUN D A, HUANG W X, SHENG D, et al. An elastoplastic model for granular materials exhibiting particle crushing[J]. Key Engineering Materials, 2007, 340/341(2): 1273–1278.
    [30]
    YAO Y P, YAMAMOTO H, WANG N D. Constitutive model considering sand crushing[J]. Soils and Foundations, 2008, 48(4): 601–608.
    [31]
    姚仰平, 万 征, 陈生水. 考虑颗粒破碎的动力UH模型[J].岩土工程学报, 2011, 33(7): 1036–1044. (YAO Yang-ping, WAN Zheng, CHEN Sheng-shui. Dynamic UH model considering particle crushing[J]. Chinese Journal of Gotechnical Engineering, 2011, 33(7): 1036–1044. (in Chinese))
    [32]
    申存科, 迟世春, 贾宇峰. 考虑颗粒破碎影响的粗粒土本构关系[J]. 岩土力学, 2010, 31(7): 2111–2121. (SHEN Cun-ke, CHI Shi-chun, JIA Yu-feng. A constitutive model for coarse granular soil incorporating particle breakage[J]. Rock and soil mechanics, 2010, 31(7): 2111–2121. (in Chinese))
    [33]
    孙海忠, 黄茂松. 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J]. 岩土工程学报, 2010, 32(8): 1284–1290. (SUN Hai-zhong, HUANG Mao-song. Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1284–1290. (in Chinese))
    [34]
    汪 稔, 孙吉主. 钙质砂不排水性状的损伤–滑移耦合作用分析[J]. 水利学报, 2002(7): 75–78. (WANG Ren, SUN Ji-zhu. Damage-slide coupled interaction behavior of undrained calcareous sand[J]. Journal of Hydraulic Engineering, 2002(7): 75–78. (in Chinese))
    [35]
    孙吉主, 罗新文. 考虑剪胀性与状态相关的钙质砂双屈服面模型研究[J]. 岩石力学与工程学报, 2006, 25(10): 2145–2149. (SUN Ji-zhu, LUO Xin-wen. Study on a two-yield surface model with consideration of state-dependent dilatancy for calcareous sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2145–2149. (in Chinese))
    [36]
    米占宽, 李国英, 陈铁林. 考虑颗粒破碎的堆石体本构模型[J]. 岩土工程学报, 2007, 29(12): 1865–1869. (MI Zhan-kuan, LI Guo-ying, CHEN Tie-lin. Constitutive model for rockfill material considering grain crushing[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1865–1869. (in Chinese))
    [37]
    RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179–1192.
    [38]
    SIMONINI P. Analysis of behavior of sand surrounding pile tips[J]. Journal of Geotechnical Engineering, 1996, 122(11): 897–905.
    [39]
    DAOUADJI A, HICHER P-Y, RAHMA A. An elastoplastic model for granular materials taking into account particle crushing[J]. European Journal of Mechanics-A/Solids, 2001, 20(1): 113–137.
    [40]
    CECCONI M, DESIMONE A, TAMAGNINI C, et al. A constitutive model for granular materials with grain crushing and its application to a pyroclastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(15): 1531–1560.
    [41]
    KIKUMOTO M, MUIR Wood D, RUSSELL A. Particle crushing and deformation behavior[J]. Soils and Foundations, 2010, 50(4): 547–563.
    [42]
    HU W, YIN Z-Y, DANO C, et al. A constitutive model for granular materials considering particle crushing[J]. Science in China Series E, 2011, 54(8): 2188–2196.
    [43]
    CHENG Y P, BOLTON M D, NAKATA Y. Crushing and plastic deformation of soils simulated using DEM[J]. Géotechnique, 2004, 54(2): 131–141.
    [44]
    LOBO-GUERRERO S, VALLEJO L E. DEM analysis of crushing around driven piles in granular materials[J]. Géotechnique, 2005, 55(8): 617–623.
    [45]
    史旦达, 周 健, 贾敏才, 等. 考虑颗粒破碎的砂土高应力一维压缩特性颗粒流模拟[J]. 岩土工程学报, 2007, 29(5): 736–742. (SHI Dan-da, ZHOU Jian, JIA Min-cai, et al. Numerical simulations of particle breakage property of sand under high pressure 1D compression condition by use of particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 736–742. (in Chinese))
    [46]
    DELUZARCHE R, CAMBOU B. Discrete numerical modelling of rockfill dams[J]. Int J Numer Anal Geomech, 2006, 30: 1075–1096.
    [47]
    KIM M S. Etude expérimentale du comportement mécanique des matériaux granulaires sous fortes contraintes[D]. Paris: école Centrale de Paris, 1995. (KIM M S. Experimental study of mechanical behavior of granular materials under high stresses[D]. Paris: Central University of Paris, 1995. (in French))
    [48]
    YAMAMURO J A, LADE P V. Drained sand behavior in axisymmetric tests at high pressures[J]. Journal of Geotechnical Engineering ASCE, 1996, 122(2): 109–119.
    [49]
    LADE P V, BOPP P A. Relative density effects on drained sand behaviour at high pressures[J]. Soils and Foundations, 2005, 45(1): 1–13.
    [50]
    BOPP P A, LADE P V. Relative density effects on undrained sand behavior at high pressures[J]. Soils and Foundations, 2005, 45(1): 15–26.
    [51]
    LêLONG. Contribution a l’étude des propriétés mécanique des sols sous fortes pressions[D]. Grenoble: Université de Grenoble, 1968. (LêLONG. Contribution to mechanical properties[D]. Grenoble: University of Grenoble, 1968. (in French))
    [52]
    YIN Z Y, CHANG C S, HICHER P Y. Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand[J]. International Journal of Solids and Structures, 2010, 47(14/15): 1933–1951.
    [53]
    YIN Z Y, CHANG C S. Stress-dilatancy for sand under loading and unloading conditions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, DOI: 10.1002/nag. 1125.
    [54]
    YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451–469.
    [55]
    YAO Y P, LU D C, ZHOU A N, et al. Generalized non-linear strength theory and transformed stress space[J]. Science in China Ser.E Engineering & Materials Science, 2004, 47(6): 691–709.
    [56]
    BANDINI V, COOP M R. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591–6
  • Related Articles

    [1]ZHANG Junjie, GU Xingwen, REN Guofeng, ZHOU Chuner, WANG Nianxiang. Test method for axial force at pile top in centrifugal model tests on pile-net composite foundation[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 264-267. DOI: 10.11779/CJGE2024S10049
    [2]Analytical study on dynamic response of saturated soil around vertical vibrating foundation pile[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240531
    [3]YI Pan-pan, NIU Sheng-kuan, WEI Chang-fu, CHEN Pan. Dynamic multi-step outflow method for tests on hydraulic properties of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1797-1801. DOI: 10.11779/CJGE201610008
    [4]LU Chih-wei, LIN Jia-sing, PENG Kai-siang. Numerical study for dynamic responses of pile foundation in shake table tests using a three dimensional effective stress analysis[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 974-981.
    [5]CAI Guo-jun, LIU Song-yu, ANAND J Puppala, TONG Li-yuan. Reliability assessment of bearing capacity of pile foundation based on CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 404.
    [6]HAN Xuan, ZHANG Nairui. In-situ tests on load transfer mechanism of group piled foundation in Beijing[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(1): 74-80.
    [7]JI Meixiu, CHEN Yunmin, HUANG Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(6): 732-736.
    [8]ZHANG Xianmin, CAI Jing, WANG Jianhua. Quantitative analysis of defects to piles in foundation with low strain dynamic test[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 47-50.
    [9]Cheng Jiulong. The dynamic detection of rock mass failure by elastic wave computerized tomography[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 565-568.
    [10]Zhou Liyun, Li Puan, Li Yong, Chen Anyuan. The Anal/sis of Penetration Resistance and Stress Wave for Dynamic Testing of Pile[J]. Chinese Journal of Geotechnical Engineering, 1991, 13(4): 1-11.

Catalog

    Article views (1680) PDF downloads (1498) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return