• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YI Pan-pan, NIU Sheng-kuan, WEI Chang-fu, CHEN Pan. Dynamic multi-step outflow method for tests on hydraulic properties of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1797-1801. DOI: 10.11779/CJGE201610008
Citation: YI Pan-pan, NIU Sheng-kuan, WEI Chang-fu, CHEN Pan. Dynamic multi-step outflow method for tests on hydraulic properties of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1797-1801. DOI: 10.11779/CJGE201610008

Dynamic multi-step outflow method for tests on hydraulic properties of unsaturated soils

More Information
  • Received Date: August 19, 2015
  • Published Date: October 24, 2016
  • Hydraulic properties of unsaturated soils play an important role in the studies on unsaturated soils. Because the traditional testing method takes a long time, a dynamic multi-step outflow method for fast determination of hydraulic characteristics of unsaturated soils is proposed. The method is based on the thermodynamic mixture of theoretical models proposed by Wei & Dewoolkar to derive saturation evolution equations to describe the non-equilibrium unsaturated soil by conducting two dynamic multi-step flow experiments on silt and silt clay samples. The dynamic evolution equations for saturation are soved according to the test results, and when the samples are in equilibrium state, the soil water characteristic curve and permeability function are obtained. This method does not solve the initial boundary values, just needs test data of dynamic multi-step outflow to solve the evolution equations for saturation, and thus hydraulic parameters of the samples are obtained. Compared with other methods, this method is more simple and effective.
  • [1]
    FREDLUND D G, XING A Q, FREDLUND M D, et al. The relationship of the unsaturated soil shear strength to the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1996, 33(3): 440-448.
    [2]
    李爱国, 岳中琦, 谭国焕, 等. 野外土-水特征及其工程意义[J]. 岩石力学与工程学报, 2004, 23(6): 969-973. (LI Ai-guo, YUE Zhong-qi, THAM L G, et al. Field soil-water characteristics and its engineering implication[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(6): 969-973. (in Chinese))
    [3]
    刘汉乐, 周启友, 徐 速. 非饱和带中非均质条件下LNAPL运移与分布特性实验研究[J]. 水文地质工程地质, 2006, 5: 52-57. (LIU Han-le, ZHOU Qi-you, XU Su. An experimental investigation of LNAPL migration and redistribution in unsaturated heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2006, 5: 52-57. (in Chinese))
    [4]
    FREDLUND D C, RAHARDJO H. 非饱和土力学[M]. 陈仲颐, 译. 北京: 中国建筑出版社, 1997. (FREDLUND D G, RAHARDJO H. Unsaturated soil mechanics[M]. CHEN Zhong-yi, trans. Beijing: China Architecture and Building Press, 1997. (in Chinese))
    [5]
    孙树国, 陈正汉, 朱元青, 等. 压力板仪配套及SWCC试验的若干问题探讨[J]. 后勤工程学院学报, 2006, 4: 1-5. (SUN Shu-guo, CHEN Zheng-han, ZHU Yuan-qing, et al. Coordinated ceramic plate extractors and some problems of SWCC test[J]. Journal of Logistical Engineering University, 2006, 4: 1-5. (in Chinese))
    [6]
    李志清, 李 涛, 胡瑞林, 等. 非饱和土土水特征曲线(SWCC)测试与预测[J]. 工程地质学报, 2007, 15(5): 700-707. (LI Zhi-qing, LI Tao, HU Rui-lin, et al. Methods for testing and predicting of SWCC in unsaturated soil mechanics[J]. Journal of Engineering Geology, 2007, 15(5): 700-707. (in Chinese))
    [7]
    LU N, WAYLLACE A, CARRERA J, et al. Constant flow method for concurrently measuring soil-water characteristic curve and hydraulic conductivity function[J]. Geotechnical Testing Journal, 2006, 29(3): 230-241.
    [8]
    VACHAUD G, VAUELIN M, WAKIL M. A study of the uniqueness of the soil moisture characteristic during desorption by vertical drainage[J]. Soil Science Society of America Journal, 1971, 36(3): 531-532.
    [9]
    TOPPG C, KLUTE A, PETERS D B. Comparison of water content-pressure head data obtained by equilibrium, steady-state, and unsteady-state methods[J]. Soil Science Society of America Journal, 1966, 31(3): 312-314.
    [10]
    SMILES D, VAEHAUD G, VAULIN M. A test of the uniqueness of the soil moisture characteristic during transient, nonhysteretic flow of water in a rigid soil[J]. Soil Science Society of America Journal, 1971, 35(4): 534-539.
    [11]
    WILDENSCHILD D, HOPMANS J W, SIMUNEK J. Flow rate dependence of soil hydraulic characteristics[J]. Soil Science Society of America Journal, 2001(65): 35-48.
    [12]
    HASSANIZADEH S M, GRAY W G. Thermodynamic basis of capillary pressure in porous media[J]. Water Resources Research, 1993, 29(10): 3389-3405.
    [13]
    CARROLL D M, PHELAN T J, ABRIOLA L M. Exploring dynamic effects in capillary pressure in multistep outflow experiments[J]. Water Resources Research, 2005, 41(11): 1-14.
    [14]
    WEI C F, DEWOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42: W07405: 1-16.
    [15]
    WEI C F, MURALEETHARAN K K. Linear viscoelastic behavior of porous media with non-uniform saturation[J]. International Journal of Engineering Science, 2007, 45: 698-715.
    [16]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.
    [17]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources, 1976, 12: 513-522.
  • Related Articles

    [1]WANG Changhong, DU Haodong, LIU Wei, ZONG Zhenbang, HU Shitao. Stability analysis of old reservoir bank landslide by considering spatial random field characteristics of unsaturated hydraulic conductivity[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 327-335. DOI: 10.11779/CJGE20211273
    [2]ZHAI Qian, ZHU Yi-yao, YE Wei-min, DU Yan-jun, DAI Guo-liang, ZHAO Xue-liang. Estimation of hydraulic conductivity of unsaturated soils under entire suction range[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 660-668. DOI: 10.11779/CJGE202204008
    [3]LI Da, WANG Shi-ji, LI Xian, CHEN Hong-kai, LIANG Guang-chuan, JIANG Wen-jun. Soil-water characteristic curve of sandy clayey purple soil under different overburden pressures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1950-1956. DOI: 10.11779/CJGE202110022
    [4]TAN Zhi-xiang, WANG Zheng-zhong, GE Jian-rui, JIANG Hao-yuan, LIU Quan-hong, MENG Xiao-dong. Experimental study on soil-water characteristic curve and permeability curve of white sandstone and mudstone in northern Xinjiang[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 229-233. DOI: 10.11779/CJGE2020S1045
    [5]ZHANG Sheng, YAN Han, TENG Ji-dong, ZHANG Xun, SHENG Dai-chao. New model for hydraulic conductivity of frozen soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2146-2152. DOI: 10.11779/CJGE202011021
    [6]ZHANG Zhao, CHENG Jing-xuan, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong. Variable cross-sectional pore model to describe hydraulic conductivity and water retention behaviors of geotechnical materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1807-1816. DOI: 10.11779/CJGE202010005
    [7]ZHOU Bao-chun, CHEN Zhi. Effects of density and hysteresis on hydraulic conductivity function of compacted expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1800-1808. DOI: 10.11779/CJGE201910003
    [8]YE Yun-xue, ZOU Wei-lie, YUAN Fei, LIU Jia-guo. Predicating soil-water characteristic curves of soils with different initial void ratios based on a pedotransfer function[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2305-2311. DOI: 10.11779/CJGE201812019
    [9]LIU Xiao-dong, SHI Jian-yong. Unsaturated conductivity of MSW based on soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(5): 855-862.
    [10]YE Yilong, LAI Yiqiu, CHEN Zhimou. Fuzzy property of hydraulic conductivity in unconfined aquifer[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 763-767.

Catalog

    Article views (374) PDF downloads (364) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return