• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Yan-lin, WAN Wen, WANG Wei-jun, ZHAO Fu-jun, CAO P ing. Compressive-shear rheological fracture of rock-like cracks and subcritical crack propagation test and fracture mechanism[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1050-1059.
Citation: ZHAO Yan-lin, WAN Wen, WANG Wei-jun, ZHAO Fu-jun, CAO P ing. Compressive-shear rheological fracture of rock-like cracks and subcritical crack propagation test and fracture mechanism[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1050-1059.

Compressive-shear rheological fracture of rock-like cracks and subcritical crack propagation test and fracture mechanism

More Information
  • Published Date: June 19, 2012
  • Based on the experiments of creep fracture of rock-like cracks under compressive-shear load and biaxial compression, a subcritical propagation fracture toughness test on rock-like materials is made by using the constant displacement load relaxation method of double torsion specimens. The presence of creep fracture is confirmed on a laboratory-scale, and three creep fracture coalescence patterns are obtained: wing crack to wing crack, wing crack to primary crack, and wing crack to wing crack to shear crack. The creep fracture of rock-like materials is a stable crack growth essentially due to the subcritical propagation of rock-like cracks. Subcritical propagation occurs in rock-like cracks. Based on viscoelastic fracture mechanics, rheologic mechanics and energy principles, the corresponding potential functions are deduced in which inner variables are stress intensity factor, wing crack length and time. The creep fracture criterion and computational model for various damage effects and rock cracks under compressive-shear load are established. Using the experiments of creep fracture to verify these computational models, the theoretical time agrees with the experimental one of creep coalescence. The error between the experimental results and theoretical models will be larger when the propagation direction of wing crack is far away from the direction of the maximum pressure stress. The proposed method and theoretical criterion will provide a new and practical tool for studying the microscopic mechanism of creep fracture of rock cracks and the macro-mechanism of creep fracture in rock engineering.
  • [1]
    KNAUSS W G. Delayed failure materials — the Griffith problem for linearly viscoelastic[J]. International Journal of Fracture Mechanics, 1970, 6 (1): 7 – 20.
    [2]
    CHRISTENSEN R M. A rate-dependent criterion for crack growth[J]. International Journal of Fracture, 1979, 15 (1): 3 – 21.
    [3]
    袁龙蔚 . 论裂纹扩展过程中的流变与耗散现象 [J]. 力学进展 , 1989, 19 (1): 20 – 35. (YUAN Long-wei. On the rheological and dissipative phenomen in the process of crack propagation[J]. Advances in Mechanics, 1989, 19 (1): 20 – 35. (in Chinese))
    [4]
    KRANZ R L. Crack growth and development during creep of barre granite[J]. International Journal of Rock Mechanics and Mining Sciences, 1979, 16 (1): 23 – 35.
    [5]
    陈有亮 , 孙 钧 . 岩石的流变断裂特性 [J] . 岩石力学与工程学报 , 1996, 15 (4): 323 – 327. ( CHEN You-liang, SUN Jun. Creep fracture of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 1996, 15 (4): 323 – 327. (in Chinese))
    [6]
    陈有亮 . 岩石蠕变断裂特性的试验研究 [J]. 力学学报 , 2003, 35 (4): 480 – 484. ( CHEN You-liang . The experimental study on creep fracture of rock[J]. Acta Mechanica Sinica , 2003, 35 (4): 480 – 484. (in Chinese))
    [7]
    邓广哲 , 朱维申 . 蠕变裂隙扩展与岩石长时强度效应实验研究 [J]. 实验力学 , 2002, 14 (2): 177 – 183. (DENG Guang-zhe, ZHU Wei-shen. An experiment research on the crack propagation in rockmass[J]. Journal of Experimental Mechanics, 2002, 14 (2): 177 – 183. (in Chinese))
    [8]
    杨延毅 . 裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究 [J]. 工程力学 , 1994, 11 (2): 81 – 90. (YANG Yan-yi. The underlying relationship between nonlinear rheological property of fissured rocks and damage development[J]. Engineering Mechanics, 1994, 11 (2): 81 – 90. (in Chinese))
    [9]
    陈卫忠 , 朱维申 . 节理岩体断裂损伤耦合的流变模型及其应用 [J]. 水 利 学报 , 1999(12): 33 – 37. ( CHEN Wei-zhong, ZHU Wei-shen, et al. Rheology and fracture damage-coupled model for rock mass[J]. Journal of Hydraulic Engineering, 1999(12): 33 – 37. (in Chinese))
    [10]
    赵延林 , 曹 平 , 林 杭 , 等 . 渗透压作用下压剪岩石裂纹流变断裂贯通机制及破坏准则探讨 [J]. 岩土工程学报 , 2008, 30. (ZHAO Yan-lin, CAO Ping, LIN Hang, et al. Study on fracture mechanism and rheologic fracture failure criterion of compressive-shear rock cracs under saturated pressure[J]. Chinese Journal of Geotechnical Engineering, 2008, 30. (in Chinese))
    [11]
    LI Jiang-teng, CAO Ping, YUAN Hai-ping. Testing study of subcritical crack growth velocity and fracture toughness of marble[J]. Journal of Coal Science & Engineering (China), 2005, 11 (1): 23 – 25.
    [12]
    SHETTY D K, VIRKAR A V. Determination of the useful range of crack length in double torsion specimens[J]. Journal of the American Ceramic Society, 1978, 61 (1): 93 – 94.
    [13]
    EBRAHIMI M E, CHEVALIER J, FANTOZZI G. Slow crack growth behavior of alumina ceramics[J]. J Master Res, 2000, 15 (1): 142 – 147.
    [14]
    KEMMENY J M. A model for non-linear rock deformation under compression due to sub-critical crack growth[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28 (6): 459 – 467.
    [15]
    赵延林 , 曹 平 , 文有道 , 等 . 岩石弹黏塑性流变实验和非线性流变模型研究 [J]. 岩石力学与工程学报 , 2008, 27 (3): 477 – 487. (ZHAO Yan-lin, CAO Ping, WEN You-dao, et al. Elastovisco-plastic rheological experiment and nonlinear rheological model of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (3): 477 – 487. (in Chinese))
    [16]
    ZHAO Yan-lin, CAO Ping, WANG Wen-jun, et al. Viscoelasto-Plastic rheological experiment under circular increment step load and unload and nonlinear creep model of soft rocks[J]. Journal of Central South University of Technology, 2009, 16 (3): 484 – 491.
    [17]
    赵延林 , 张 英 , 万 文 . 层状盐岩力学特性及蠕变破坏模型 [J]. 矿业工程研究 , 2010, 25 (1): 16 – 20. (ZHAO Yan-lin, ZHANG Ying, WAN Wen. Mechanical properties of bedded rock salt and creep failure model[J]. Mineral Engineering Research, 2010, 25 (1): 16 – 20. (in Chinese) )
    [18]
    衣永亮 , 曹 平 , 蒲成志 . 静载下预制裂隙类岩石材料断裂实验分析 [J]. 湖南科技大学学报 ( 自然科学版 ), 2010, 25 (1): 67 – 71. (YI Yong-liang, CAO Ping, PU Cheng-zhi. Fracture experiment and analysis of rock-like material with prefabricated-fissures under static loading[J]. Journal of Huanan University of Science & Technology (Natural Science Edition), 2010, 25 (1): 67 – 71. (in Chinese))
    [19]
    孙小康 , 朱单慧 , 徐燕飞 . 分级加卸载条件下岩石的弹塑性流变特性 [J]. 矿业工程研究 , 2011, 26 (4): 1 – 5. (SUN Xiao-kang, ZHU Zhuo-hui, XU Fan-fei. Elasto-plastic rheology properties of rock under the conditions of step loading and unloading[J]. Mineral Engineering Research, 2011, 26 (4): 1 – 5. (in Chinese))
    [20]
    CICCOTTI M, GONZATO G, MULARGIA F. The double torsion loading configuration for fracture propagation: an improved methodology for the load-relaxation at constant displacement[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37 (7): 1103 – 1113.
    [21]
    叶洲元 , 周志华 , 马建军 , 等 . 大冶铁矿软岩巷道围岩松动圈的测试研究 [J]. 矿业工程研究 , 2009, 24 (1): 18 – 21. (YE Zhou-yuan, ZHOU Zhi-hua, MA Jian-jun, et al. Study of measuring the broken zone in soft rock roads in Daye Iron Mine[J]. Mineral Engineering Research, 2009, 24 (1): 18 – 21. (in Chinese) )
  • Related Articles

    [1]CHEN Kai, YAO Yangping, ZHU Binglong. Practical prediction method for settlement considering whole consolidation process[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 103-106. DOI: 10.11779/CJGE2024S20019
    [2]ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007
    [3]HE Jia-qi, LIN Man-qing, LIU Xi-qi, ZHANG Lan, ZHANG Dian-ji, XIONG Wen, PENG Ya-li. New method for introducing gradient stress into rock-burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2098-2105. DOI: 10.11779/CJGE202011015
    [4]ZHOU Feng-xi, SHAO Yan-ping, MUSA Abdallah Ibrahim Ahmed. Logistic model for isotropic consolidation curve of soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 976-980. DOI: 10.11779/CJGE202005021
    [5]LIU Hai-ming, ZHOU Xiao-gui, WANG Zhong-wei, HUANG Di, YANG Huai-hao. Prediction of subgrade settlement using PMIGM(1,1) model based on particle swarm optimization and Markov optimization[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 205-208. DOI: 10.11779/CJGE2019S1052
    [6]TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012
    [7]LIU Chen-hui, ZHOU Dong, WU Heng. Measurement and prediction of temperature effects of thermal conductivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1877-1886.
    [8]ZHU Zhiduo, ZHOU Lihong. Application of Logistic model in settlement prediction during complete process of embankment construction[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 965-969.
    [9]JIN Zhiren. Prediction of sand liquefaction based on distance discriminant analysis and its application[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 776-780.
    [10]Wang Yuemin, Tang Jinghua, Ling Jianming. Study on prediction method for reservoir bank caving[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 569-571.

Catalog

    Article views (1364) PDF downloads (804) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return