• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Yuzhen, DENG Lijun. Centrifuge modeling of seismic behavior of slopes reinforced by stabilizing pile[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1320-1323.
Citation: YU Yuzhen, DENG Lijun. Centrifuge modeling of seismic behavior of slopes reinforced by stabilizing pile[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1320-1323.

Centrifuge modeling of seismic behavior of slopes reinforced by stabilizing pile

More Information
  • Published Date: September 16, 2007
  • Centrifuge model tests on sand slopes were carried out on a centrifuge shaking table to investigate the seismic behavior of pile-reinforced slope and soil-pile interaction.The adjusted El Centro earthquake was excited as the input motion under 50g centrifugal accelerations.Acceleration time histories at different locations were recorded and analyzed in the frequency domain.Dynamic soil pressure and vertical strain along the piles were also recorded.It was indicated that the seismic response of the slopes was amplified as the earthquake motion propagated upwards.The response of adjacent soil was impeded by stabilizing piles to a certain degree.Along with the excitation of earthquake motion,the dynamic soil pressure rapidly increased to the peak value and then kept roughly stable until the end of the motion.The bending moment of the piles performed similar variation and the maximum moment occurred at the lower section of the piles.
  • Related Articles

    [1]QIAN Jian-gu, DU Zi-bo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381-1390. DOI: 10.11779/CJGE201608004
    [2]YAN Jia-jia, ZHOU Jian, GONG Xiao-nan, ZHENG Hong-bin. Deformation behavior of intact clay under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 474-481. DOI: 10.11779/CJGE201403010
    [3]YANG Yun-ming. A soil model considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 479-486.
    [4]YAO Zhao-ming, HUANG Mao-song, CAO Jie. Cumulative deformation of saturated soft clay subjected to cyclic rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1005-1012.
    [5]TONG Zhaoxia, ZHANG Jianmin, YU Yilin, ZHANG Ga. Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 946-952.
    [6]SHEN Yang, ZHOU Jian, GONG Xiaonan, LIU Hanlong. Influence of principal stress rotation on overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1514-1519.
    [7]TONG Zhaoxia, YU Yilin, ZHANG Jianmin, ZHANG Ga. Deformation behavior of sands subjected to cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1196-1202.
    [8]SHEN Yang, ZHOU Jian, GONG Xiaonan. Analysis on ability of HCA to imitate cyclic principal stress rotation under constant confining pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 281-287.
    [9]SHI Hongyan, XIE Dingyi, WANG Wenshao. Strain due to rotation of principal stress axes under plane strain condition[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 162-166.
    [10]Liu Yuanxue, Zheng Yingren. A new method to analyze the influence of principal stress axes rotation on the stress-strain relation of soils[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 45-47.

Catalog

    Article views (1399) PDF downloads (602) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return