• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TONG Zhaoxia, YU Yilin, ZHANG Jianmin, ZHANG Ga. Deformation behavior of sands subjected to cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1196-1202.
Citation: TONG Zhaoxia, YU Yilin, ZHANG Jianmin, ZHANG Ga. Deformation behavior of sands subjected to cyclic rotation of principal stress axes[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8): 1196-1202.

Deformation behavior of sands subjected to cyclic rotation of principal stress axes

More Information
  • Published Date: August 14, 2008
  • Two series of drained tests with fixed principal stress axes and cyclic rotation of principal stress axes were conducted with a hollow cylinder apparatus at Hong Kong University of Science and Technology.The inherent anisotropy of sands was investigated firstly through the shear tests with fixed principal stress axes.For the tests under the condition of cyclic rotation of principal stress axes,the magnitudes of three effective principal stresses were kept constant and only the principal stress axes rotated cyclically from 0° to 180° relative to vertical axis.The developments of four strain components and the volumetric strain with number of cycles,the relationship between shear stress and shear strain and the effects of deviatoric stress and effective mean normal stress were studied.
  • Related Articles

    [1]XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
    [2]ZHANG Hui-mei, XIE Xiang-miao, PENG Chuan, YANG Geng-she, YE Wan-jun, SHENG Yan-jun. Constitutive model for damage of freeze-thaw rock under three-dimensional stress[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1444-1452. DOI: 10.11779/CJGE201708011
    [3]DU Xiu-li, HUANG Jing-qi, JIN Liu, ZHAO Mi. Three-dimension elastic-plastic damage constitutive model for intact rock[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 978-985. DOI: 10.11779/CJGE201706002
    [4]LIU Hong-yan, WANG Xin-sheng, ZAHNG Li-min, ZHANG Li-guo. A dynamic damage constitutive model for rock mass with non-persistent joints under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 426-436. DOI: 10.11779/CJGE201603005
    [5]YUAN Xiao-qing, LIU Hong-yan, LIU Jing-ping. 3-D constitutive model for rock masses with non-persistent joints based on compound damage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 91-99. DOI: 10.11779/CJGE201601009
    [6]ZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1965-1971.
    [7]ZHOU Zhi-gang, LI Yu-zhou. Creep properties and viscoelastic-plastic-damaged constitutive model of geogrid[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1943-1949.
    [8]Implementation and application of constitutive model for damage evolution of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [9]ZHOU Jianting, LIU Yuanxue. Constitutive model for isotropic damage of geomaterial[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1636-1641.
    [10]LU Zaihua, CHEN Zhenghan. An elastoplastic damage constitutive model of unsaturated undisturbed expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 422-426.

Catalog

    Article views (1405) PDF downloads (422) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return