• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Hui-mei, XIE Xiang-miao, PENG Chuan, YANG Geng-she, YE Wan-jun, SHENG Yan-jun. Constitutive model for damage of freeze-thaw rock under three-dimensional stress[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1444-1452. DOI: 10.11779/CJGE201708011
Citation: ZHANG Hui-mei, XIE Xiang-miao, PENG Chuan, YANG Geng-she, YE Wan-jun, SHENG Yan-jun. Constitutive model for damage of freeze-thaw rock under three-dimensional stress[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1444-1452. DOI: 10.11779/CJGE201708011

Constitutive model for damage of freeze-thaw rock under three-dimensional stress

More Information
  • Received Date: May 07, 2016
  • Published Date: August 24, 2017
  • Considering the random characteristics of defects of rock materials, the model for damage of freeze-thaw and loaded rock considering the influence of confining pressure is established based on the theory of continuum damage mechanics. According to the geometric condition of the deformation and failure curve of red sandstone, the expressions for model parameters containing only the basic characteristic parameters of rock are determined. The rationality of the model is verified by the experiments on mechanical characteristics of rock under freeze-thaw cycls. It is shown that the crack-dominated micro mechanical response of the red sandstone is consistent with the macroscopic deformation and failure characteristics. The damage degree of sandstone, which is shown as the deterioration of the mechanical properties of the materials in the macroscopic performance, increases with the increase of the number of freeze-thaw cycles. But the strain of rock increases and the plastic property increases with the same damage degree at the later stage of deformation. The confining pressure can improve the stress state of rock, so the damage degree decreases with the increase of the confining pressure, which is shown as the strength of the materials to resist damage and the increase of plastic deformation.
  • [1]
    李 宁, 程国栋, 谢定义. 西部大开发中的岩土力学问题[J]. 岩土工程学报, 2001, 23(3): 268-272. (LI Ning, CHENG Guo-dong, XIE Ding-yi. Geomechanics development in civil construction in Western China[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 268-272. (in Chinese))
    [2]
    CHENG G D, MA W. A research review of international permafrost engineering[J]. Journal of Glaciology and Geocryology, 2003, 25(3): 303-308.
    [3]
    陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报, 2011, 30(7): 1318-1336. (CHEN Wei-zhong, TAN Xian-jun, YU Hong-dan, et al. Advance and review on thermo-hydro- mechanical characteristics of rock mass under condition of low temperature and freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1318-1336. (in Chinese))
    [4]
    王 利. 岩石损伤演化理论与数值模拟[M]. 杭州: 浙江大学出版社, 2015. (WANG Li. Theory of rock damage evolution and numerical simulation[M]. Hangzhou: Zhejiang University Press, 2015. (in Chinese))
    [5]
    PARK J, HYUN C U, PARK H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action[J]. Bulletin of Engineering Geology and the Environment, 2014, 74(2): 555-565.
    [6]
    YAVUZ H, ALTINDAG R, SARAC S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 767-775.
    [7]
    PRICK A. Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J]. Catena, 1995, 25(2): 7-20.
    [8]
    YAVUZ H. Effect of freeze-thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone[J]. Bulletin of Engineering Geology and the Environment, 2011, 70(2): 187-192.
    [9]
    BAYRAM F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J]. Cold Regions Science and Technology, 2012, 83(12): 98-102.
    [10]
    林战举, 牛富俊, 刘 华, 等. 循环冻融对冻土路基护坡块石物理力学特性的影响[J]. 岩土力学, 2011, 32(5): 1369-1376. (LIN Zhan-ju, NIU Fu-jun, LIU Hua, et al. Influences of freezing-thawing cycles on physico-mechanical properties of rocks of embankment revetments in permafrost regions[J]. Rock and Soil Mechanics, 2011, 32(5): 1369-1376. (in Chinese))
    [11]
    葛修润, 任建喜, 蒲毅彬, 等. 岩石细观损伤扩展规律的CT实时试验[J]. 中国科学(E辑), 2000, 30(2): 104-111. (GE Xiu-run, REN Jian-xi, PU Yi-bin. et al. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock[J]. Science in Chinese (Series E), 2000, 30(2): 104-111. (in Chinese))
    [12]
    周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的实验研究[J]. 岩石力学与工程学报, 2012, 31(4): 731-737. (ZHOU Ke-ping, LI Jie-lin, XU Yu-juan, et al. Experimental study of NMR characteristics in rock under freezing and thawing cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 731-737. (in Chinese))
    [13]
    李杰林, 周科平, 张亚民, 等. 冻融循环条件下风化花岗岩物理特性的实验研究[J]. 中南大学学报(自然科学版), 2014. 45(3): 798-802. (LI Jie-lin, ZHOU Ke-ping, ZHANG Ya-min, et al. Experiment study on physical characteristics in weathered granite under freezing-thawing cycles[J]. Journal of Central South University(Science and Technology), 2014. 45(3): 798-802. (in Chinese))
    [14]
    张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476. (ZHANG Hui-mei, YANG Geng-she. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese))
    [15]
    张慧梅, 杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报, 2013, 38(10): 1756-1762. (ZHANG Hui-mei, YANG Geng-she. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society, 2013, 38(10): 1756-1762. (in Chinese))
    [16]
    陈有亮, 代明星, 刘明亮, 等. 含初始损伤岩石的冻融损伤试验研究[J]. 力学季刊, 2013, 34(1): 74-80. (CHEN You-liang, DAI Ming-xing, LIU Ming-liang, et al. Experimental investigation on freezing damage characteristics of granite with initial damage[J]. Chinese Quarterly of Mechanics, 2013, 34(1): 74-80. (in Chinese))
    [17]
    刘松明, 陈有亮, 杜 曦, 等. 酸侵蚀区白砂岩冻融损伤的影响因素研究[J]. 水资源与水工程学报, 2014, 25(5): 127-131. (LIU Song-ming, CHEN You-liang, DU Xi, et al. Study on influences factor of freezing-thawing damage of white sandstone in acid erosion area[J]. Journal of Water Resources and Water Engineering, 2014, 25(5): 127-131. (in Chinese))
    [18]
    LEMAITRE J. A course on damage mechanics[M]. Berlin: Springer-Verlag Berlin Heidelberg, 1992.
    [19]
    曹文贵, 赵明华, 唐学军. 岩石破裂过程的统计损伤模拟研究[J]. 岩土工程学报, 2003, 25(2): 184-187. (CAO Wen-gui, ZHAO Ming-hua, TANG Xue-jun. Study on simulation of statistical damage in the full process of rock failure[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 184-187. (in Chinese))
  • Related Articles

    [1]XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
    [2]DU Xiu-li, HUANG Jing-qi, JIN Liu, ZHAO Mi. Three-dimension elastic-plastic damage constitutive model for intact rock[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 978-985. DOI: 10.11779/CJGE201706002
    [3]YUAN Xiao-qing, LIU Hong-yan, LIU Jing-ping. 3-D constitutive model for rock masses with non-persistent joints based on compound damage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 91-99. DOI: 10.11779/CJGE201601009
    [4]LIU Hong-yan, LÜ Shu-ran, ZHANG Li-min. Dynamic damage constitutive model for persistent jointed rock mass based on combination model method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1814-1821. DOI: 10.11779/CJGE201410008
    [5]ZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1965-1971.
    [6]ZHOU Zhi-gang, LI Yu-zhou. Creep properties and viscoelastic-plastic-damaged constitutive model of geogrid[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1943-1949.
    [7]Implementation and application of constitutive model for damage evolution of fractured rock mass[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]ZHOU Jianting, LIU Yuanxue. Constitutive model for isotropic damage of geomaterial[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1636-1641.
    [9]CAO Wengui, MO Rui, LI Xiang. Study on statistical constitutive model and determination of parameters of rock based on normal distribution[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 671-675.
    [10]LU Zaihua, CHEN Zhenghan. An elastoplastic damage constitutive model of unsaturated undisturbed expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4): 422-426.
  • Cited by

    Periodical cited type(5)

    1. 张冬梅,朱锐,陈淙岑,黄忠凯,张吾渝,朱美恒. 地表超载作用下锈蚀盾构隧道结构易损性分析. 湖南大学学报(自然科学版). 2025(01): 196-206 .
    2. 柳献,刘震,叶宇航,姚鸿梁. 复杂受荷下盾构隧道原型结构试验平台的研发与实证. 岩土工程学报. 2024(05): 927-937 . 本站查看
    3. 孙立军,付金伟,刘美,汪德才,郭长龙. 地表堆载对盾构隧道稳定性影响的三维试验研究. 工程勘察. 2024(11): 1-6+20 .
    4. 吴梦琴,丁智,王震. 盾构隧道管片承载性能研究综述. 低温建筑技术. 2023(09): 58-62 .
    5. 张晏铭,刘庭金,朱超,肖俊贤. 超载作用下土岩复合地层盾构隧道变形及破坏特征模型试验研究. 铁道科学与工程学报. 2023(11): 4277-4287 .

    Other cited types(6)

Catalog

    Article views (376) PDF downloads (344) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return