• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xian, LIU Zhen, YE Yuhang, YAO Hongliang. Development and demonstration of prototype test platform for shield tunnel linings under complex loading scenarios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 927-937. DOI: 10.11779/CJGE20230155
Citation: LIU Xian, LIU Zhen, YE Yuhang, YAO Hongliang. Development and demonstration of prototype test platform for shield tunnel linings under complex loading scenarios[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 927-937. DOI: 10.11779/CJGE20230155

Development and demonstration of prototype test platform for shield tunnel linings under complex loading scenarios

More Information
  • Received Date: February 22, 2023
  • Available Online: June 19, 2023
  • During the entire life cycle of shield tunnel structures, there will always be various complex loading scenarios, including asymmetric and unfavorable conditions like grouting, eccentric loading, or rolling. The prototype structural tests are the most effective means to verify the applicability of the structures under such scenarios. However, the existing prototype tests predominantly focus on the mechanical behavior of tunnel structures under simple symmetric loading, while complex asymmetric loading scenarios are rarely addressed. To expand the application of the prototype tests, a prototype test platform suitable for the tunnel structures with any cross-sections is established. Additionally, a corresponding test load design method simulating the complex scenarios is also proposed, which is applicable to loading systems with any arrangement of loading points and hydraulic stations. To demonstrate the effectiveness of the test platform, the Quasi-rectangular tunnel, DOT (double circular) tunnel, and circular tunnel under the eccentric loading scenario are taken as examples. Further analysis of key test parameters reveals that the weight coefficients of control targets can be adjusted to meet different simulation requirements. The proposed test load design method allows for iterative modifications, effectively considering the nonlinearity of the model or boundary support conditions. By combining the hoop strand with the hydraulic jacks in the loading mode, the fitting error level can be reduced to 1/5 compared to the jacks-only loading mode, where some loading points need to be cancelled to make the design test load reasonable and applicable. For the accurate simulation of structural behavior under different loading scenarios, the structures with greater complexity and loading scenarios require a higher number of independent loading groups and more stringent requirements for the test platform.
  • [1]
    LIU X, BAI Y, YUAN Y, et al. Experimental investigation of the ultimate bearing capacity of continuously jointed segmental tunnel linings[J]. Structure and Infrastructure Engineering, 2016, 12(10): 1364-1379. doi: 10.1080/15732479.2015.1117115
    [2]
    魏纲, 张书鸣, 余剑英, 等. 地面堆载对盾构隧道围压影响的模型试验与理论分析[J]. 岩土工程学报, 2022, 44(10): 1789-1798. doi: 10.11779/CJGE202210004

    WEI Gang, ZHANG Shuming, YU Jianying, et al. Model tests and theoretical analyses of influences of surface surcharge on confining pressure of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1789-1798. (in Chinese) doi: 10.11779/CJGE202210004
    [3]
    李磊, 张孟喜, 吴惠明, 等. 近距离多线叠交盾构施工对既有隧道变形的影响研究[J]. 岩土工程学报, 2014, 36(6): 1036-1043. doi: 10.11779/CJGE201406007

    LI Lei, ZHANG Mengxi, WU Huiming, et al. Influence of short-distance multi-line overlapped shield tunnelling on deformation of existing tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1036-1043. (in Chinese) doi: 10.11779/CJGE201406007
    [4]
    FENG K, HE C, ZHOU J M, et al. Model test on impact of surrounding rock deterioration on segmental lining structure for underwater shield tunnel with large cross-section[J]. Procedia Environmental Sciences, 2012, 12: 891-898. doi: 10.1016/j.proenv.2012.01.364
    [5]
    SHEN S L, HORPIBULSUK S, LIAO S M, et al. Analysis of the behavior of DOT tunnel lining caused by rolling correction operation[J]. Tunnelling and Underground Space Technology, 2009, 24(1): 84-90. doi: 10.1016/j.tust.2008.05.003
    [6]
    FENG K, HE C A, FANG Y, et al. Study on the mechanical behavior of lining structure for underwater shield tunnel of high-speed railway[J]. Advances in Structural Engineering, 2013, 16(8): 1381-1399. doi: 10.1260/1369-4332.16.8.1381
    [7]
    SCHREYER J, WINSELMAN D. Suitability tests for the lining for the 4th Elbe Tunnel Tube-Results of large-scale Tests[J]. Tunnel, 2000(1): 34-44.
    [8]
    VERVUURT A, LUTTIKHOLT A, DEN Uijl J A. Failure behaviour of segmented tunnel linings: numerical modeling validated by full scale tests[C]// EURO-TUN 2007, Vienna, 2007: 1-13.
    [9]
    NAKAMURA H, KUBOTA T, FURUKAWA M, et al. Unified construction of running track tunnel and crossover tunnel for subway by rectangular shape double track cross-section shield machine[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 253-262.
    [10]
    CHOW B. Double-O-tube shield tunneling technology in the Shanghai Rail Transit Project[J]. Tunnelling and Underground Space Technology, 2006, 21(6): 594-601. doi: 10.1016/j.tust.2005.11.003
    [11]
    LIU Xian, HU Xinyu, GUAN Linxing, et al. The ultimate bearing capacity of rectangular tunnel lining assembled by composite segments: An experimental investigation[J]. Steel and Composite Structures, An International Journal, 2017, 24(4): 481-497.
    [12]
    LIU Xian, LIU Zhen, YE Yuhang, et al. Mechanical behavior of quasi-rectangular segmental tunnel linings: further insights from full-scale ring tests[J]. Tunnelling and Underground Space Technology, 2018, 79: 304-318. doi: 10.1016/j.tust.2018.05.016
    [13]
    ZHANG Z X, ZHU Y T, HUANG X, et al. 'Standing' full-scale loading tests on the mechanical behavior of a special-shape shield lining under shallowly-buried conditions[J]. Tunnelling and Underground Space Technology, 2019, 86: 34-50. doi: 10.1016/j.tust.2019.01.010
    [14]
    王彪, 刘祖华, 鲁亮. 上海崇明越江隧道衬砌整环试验加载方法研究[J]. 施工技术, 2006, 35(增刊1): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS2006S1020.htm

    WANG Biao, LIU Zuhua, LU Liang. A loading method of the test for lining whole wreath of Shanghai Chongming tunnel[J]. Construction Technology, 2006, 35(S1): 52-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS2006S1020.htm
    [15]
    封坤, 何川, 夏松林. 大断面盾构隧道结构横向刚度有效率的原型试验研究[J]. 岩土工程学报, 2011, 33(11): 1750-1758. http://cge.nhri.cn/cn/article/id/14424

    FENG Kun, HE Chuan, XIA Songlin. Prototype tests on effective bending rigidity ratios of segmental lining structure for shield tunnel with large cross-section[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1750-1758. (in Chinese) http://cge.nhri.cn/cn/article/id/14424
    [16]
    HE C, FENG K, YAN Q X. Prototype test study on mechanical characteristics of segmental lining structure of underwater railway shield tunnel[J]. Engineering Sciences, 2014, 12(2): 65-74.
    [17]
    ZHOU L, SHEN Y, GUAN L X, et al. Full-scale experiment for segmental linings of deep-buried shield tunnels bearing high inner water pressure: comparison of mechanical behaviors of continuous- and stagger-jointed structures[J]. Underground Space, 2023, 8: 252-266. doi: 10.1016/j.undsp.2022.03.005
    [18]
    刘威, 王祺, 庄欠伟, 等. 深埋排水调蓄盾构隧道管片1∶1力学试验系统的研发与应用[J]. 中国公路学报, 2020, 33(2): 103-113, 157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002010.htm

    LIU Wei, WANG Qi, ZHUANG Qianwei, et al. Development and application of a 1∶1 mechanical testing system for deeply-buried water storage and sewage shield tunnel[J]. China Journal of Highway and Transport, 2020, 33(2): 103-113, 157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002010.htm
    [19]
    黄鸿浩. "管片-SCC-钢衬"叠合式衬砌体系足尺结构试验设计与抗外载特性研究[D]. 广州: 华南理工大学, 2019.

    HUANG Honghao. Full-scale Experimental Investigation on the Bearing Characteristics of Segment-SCC-Steel Superimposed Lining Structure Subjected to External Pressure[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
    [20]
    王康任, 庞小朝, 刘树亚, 等. 复杂荷载条件下错缝拼装盾构隧道受力性能及结构安全指标研究[J]. 现代隧道技术, 2018, 55(增刊2): 588-598. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2076.htm

    WANG Kangren, PANG Xiaochao, LIU Shuya, et al. Study on mechanical performances and structural safety index of stagger-jointed shield tunnel under complex load conditions[J]. Modern Tunnelling Technology, 2018, 55(S2): 588-598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2076.htm
    [21]
    朱瑶宏, 杨振华, 陈飞飞, 等. 模拟土与隧道相互作用的液压加载系统设计与试验应用[J]. 铁道科学与工程学报, 2020, 17(4): 915-923.

    ZHU Yaohong, YANG Zhenhua, CHEN Feifei, et al. Design and application of a hydraulic loading system simulating tunnel-soil interaction[J]. Journal of Railway Science and Engineering, 2020, 17(4): 915-923. (in Chinese)
    [22]
    ZHANG L, LIU X A. Experimental investigation of the deformed stagger-jointed segmental tunnel linings strengthened by epoxy-bonded filament wound profiles[J]. Materials, 2022, 15(19): 6862. doi: 10.3390/ma15196862
    [23]
    姚鸿梁. 机器视觉测量技术在隧道结构试验中的应用研究[J]. 隧道与轨道交通, 2022(2): 16-20, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC202202005.htm

    YAO Hongliang. Application of machine vision measurement technology in tunnel structure test[J]. Tunnel and Rail Transit, 2022(2): 16-20, 80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSGC202202005.htm
    [24]
    郭璇, 朱坤, 张晓新, 等. 双圆盾构隧道-软土层相互作用规律的模型试验及响应分析[J]. 铁道学报, 2016, 38(9): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609015.htm

    GUO Xuan, ZHU Kun, ZHANG Xiaoxin, et al. DOT model test and interactive response analysis of soft soil layer to double circular shield tunnel[J]. Journal of the China Railway Society, 2016, 38(9): 101-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609015.htm
  • Cited by

    Periodical cited type(19)

    1. 许博闻,兰恒星,刘世杰. 界面形态对黄土-泥岩接触面剪切力学特性影响研究. 工程地质学报. 2024(02): 448-462 .
    2. 黄晓虎,魏兆亨,易武,郭飞,黄海峰,肖宇煌. 裂隙优势流入渗诱发堆积层滑坡浅层破坏机理研究. 岩土工程学报. 2024(06): 1136-1145 . 本站查看
    3. 赵宽耀,许强,陈婉琳,彭大雷,高登辉. 黄土塬边漫灌区土体水入渗过程研究. 岩土力学. 2024(09): 2754-2764 .
    4. 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 .
    5. 王诏楷. 地下水人工回灌颗粒沉积研究进展. 江淮水利科技. 2023(01): 9-14 .
    6. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 .
    7. 吴玮江,宋丙辉,刘迪,安亚鹏. 黄土塬区包气带水分运移特征研究. 水文地质工程地质. 2023(03): 12-22 .
    8. 曾鹏,王宇豪,张天龙,张琳,南骁聪. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测. 地球科学. 2023(05): 1675-1685 .
    9. 冯乐涛,吴玮江,刘兴荣,宿星,万朝东. 黄土高原降水入渗方式与引发滑坡研究——以甘肃黄土地区为例. 科学技术与工程. 2023(14): 5937-5945 .
    10. 许增光,李海洋,柴军瑞,曹成,陈东来. 堤坝内集中渗漏通道与周围介质水量交换研究. 水力发电学报. 2023(07): 12-23 .
    11. 赵宽耀,许强,高登辉,刘方洲,彭大雷,陈婉琳. 坡底饱和型黄土滑坡离心模拟试验. 岩土力学. 2023(11): 3213-3223 .
    12. 赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 .
    13. 许强,陈婉琳,蒲川豪,袁爽,刘佳良. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践. 工程地质学报. 2022(04): 1179-1192 .
    14. 宁瑞浩,冷艳秋,何芝远,李泽坤,马哲. 基于CT的黄土孔隙尺度优先流特性. 科学技术与工程. 2022(23): 9927-9936 .
    15. 蒋小虎,黄跃廷,胡海军,陈铄,陈锐,王崇华,汪慧,康顺祥. 基于原位双环、试坑浸水试验和数值模拟反演的Q_3黄土饱和渗透系数对比研究. 岩土力学. 2022(11): 2941-2951 .
    16. 李同录,汪颖,胡向阳,李萍,王宇. 厚层非饱和黄土中优势流和活塞流的讨论. 工程地质学报. 2022(06): 1842-1848 .
    17. 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 .
    18. 孙恒飞,朱兴华,成玉祥,张智锋,张卜平,蔡佳乐. 黄土优势渗流研究进展与展望. 自然灾害学报. 2021(06): 1-12 .
    19. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 .

    Other cited types(22)

Catalog

    Article views (372) PDF downloads (106) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return