Citation: | YAO Zhao-ming, HUANG Mao-song, CAO Jie. Cumulative deformation of saturated soft clay subjected to cyclic rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1005-1012. |
[1] |
GBABOUSSI J, MOMEN H. Plasticity model for cyclic behavior of sands[C]// Proceedings of the 3rd International Conference on Numerical Methods in Geomechanics. Aachen, 1979: 423 – 434.
|
[2] |
MROZ Z, NORRIS V A, ZIEENKIEWICZ O C. An anisotropic hardening model for soils and its application to cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1978, 2 (3): 203 – 221.
|
[3] |
LI T, MEISSNER H. Two-surface plasticity model for cyclic undrained behavior of clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128 (7): 613 – 626.
|
[4] |
SUIKER A S J, de Borst R. A numerical model for the cyclic deterioration of railway tracks[J]. International Journal for Numerical Methods In Engineering, 2003, 57 (4): 441 – 470.
|
[5] |
PONDER A R S. The analysis of cyclically loaded creeping structures for short cyclic times[J]. International Journal of Solids and Structures, 1976, 12 (2): 809 – 825.
|
[6] |
MONISMITH C L, OGAWA N, FREEME C R. Permanent deformation characteristics of subgrade soils due to repeated loading[R]. Transportation Research Record. No. 537. Transportation Research Board. Washington, D C, 1975: 1 – 17.
|
[7] |
LI D, SELIG E T. Cumulative plastic deformation for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, 1996, 122 (12): 1006 – 1013.
|
[8] |
CHAI J C, MIURA N. Traffic-load induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128 (11): 907 – 916.
|
[9] |
PARR G B. Some aspects of the behavior of London clay under repeated loading[D]. Nottingham: University of Nottingham, 1972.
|
[10] |
黄茂松 , 李进军 , 李兴照 . 饱和软黏土的不排水循环累积变形特性 [J]. 岩土工程学报 , 2006, 28 (7): 891 – 895. (HUANG Mao-song, LI Jin-jun, LI Xing-zhao. Cumulative deformation behavior of soft clay in cyclic undrained tests [J] . Chinese Journal of Geotechnical Engineering, 2006, 28 (7): 891 – 895. (in Chinese))
|
[11] |
刘 明 , 黄茂松 , 柳艳华 . 车振荷载引起的软土越江隧道长期沉降分析 [J]. 岩土工程学报 , 2009, 31 (11): 1703 – 1709. (LIU Ming, HUANG Mao-song, LIU Yan-hua. Analysis for long-term settlement of tunnel across river induced by vehicle operation[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (11): 1703 – 1709. (in Chinese))
|
[12] |
黄茂松 , 姚兆明 . 循环 荷载 下饱和软黏土的累积变形显式模型 [J]. 岩土工程学报 , 2011, 33 (3): 325 – 331. ( HUANG Mao-song, YAO Zhao-ming. Explicit model for saturated clay behavior subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (3)): 325 – 331. (in Chinese))
|
[13] |
沈 扬 . 考虑主应力 方向 变化的原状软黏土试验研究 [D]. 杭州 : 浙江大学 , 2007. (SHEN Yang. Experimental study on effect of variation of principal stress orientation on undisturbed soft clay[D]. Hangzhou: Zhejiang University, 2007. (in Chinese))
|
[1] | ZHAI Qian, TIAN Gang, ZHU Yiyao, DAI Guoliang, ZHAO Xueliang, GONG Weimin, DU Yanjun. Physical-statistical model for estimation of hysteresis of soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2072-2080. DOI: 10.11779/CJGE20220865 |
[2] | ZHANG Yu-wei, SONG Zhan-ping, XIE Yong-li. Prediction model for soil-water characteristic curve of loess under porosity change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2017-2025. DOI: 10.11779/CJGE202211007 |
[3] | TAO Gao-liang, LIAO Ling-jin, LEI Da, OUYANG Qing, PENG Yin-jie, ZHANG Fan. Fractal model for bimodal soil-water characteristic curve and its application in pore classification[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1799-1809. DOI: 10.11779/CJGE202210005 |
[4] | FU Ying-peng, LIAO Hong-jian, LÜ Long-long, CHAI Xiao-qing. Hysteretic model for fitting soil-water characteristic curves considering contact angle and grain-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 502-513. DOI: 10.11779/CJGE202203012 |
[5] | FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014 |
[6] | ZHOU Bao-chun, CHEN Zhi. Effects of density and hysteresis on hydraulic conductivity function of compacted expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1800-1808. DOI: 10.11779/CJGE201910003 |
[7] | ZHANG Zhao, LIU Feng-yin, QI Ji-lin, CHAI Jun-rui, LI Hui-yong, LI Jian-jun. Physical approach to predict water retention curves for unsaturated soils based on particle-size distribution[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 241-246. DOI: 10.11779/CJGE2018S1039 |
[8] | GAO You, SUN De-an. Determination of basic parameters of unimodal and bimodal soil water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1884-1891. DOI: 10.11779/CJGE201710017 |
[9] | SUN De-an, GAO You, LIU Wen-jie, WEI Chang-fu, ZHANG Sheng. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351-356. DOI: 10.11779/CJGE201502020 |
[10] | LIU Yan, ZHAO Chenggang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 399-405. |