• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Zhengyin, FAN Kaifang, ZHU Xun. Dynamic characteristics of offshore wind power with bucket foundation based on field tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 443-452. DOI: 10.11779/CJGE20231183
Citation: CAI Zhengyin, FAN Kaifang, ZHU Xun. Dynamic characteristics of offshore wind power with bucket foundation based on field tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 443-452. DOI: 10.11779/CJGE20231183

Dynamic characteristics of offshore wind power with bucket foundation based on field tests

More Information
  • Received Date: December 03, 2023
  • Available Online: July 23, 2024
  • The offshore wind power structures bear complex environmental loads induced by winds and waves over the life time. Dynamic characteristic is an important basis for the safety assessment of the offshore wind power structures. Based on the in-situ test data of offshore wind power on composite bucket foundation in Rudong county of Jiangsu Province, the structural modal parameters under different environmental excitations are identified, and the evolution laws of dynamic characteristics of offshore wind power with environmental excitations and time are analyzed. The results show that the modal frequency and damping ratio of the offshore wind power obey the normal distribution, and exhibit a certain degree of dispersion. The modal frequency and damping ratio in the radial direction are concentrated in the ranges of 0.308~0.315 Hz and 2.75%~3.5%, respectively. The wind load is the key control one for vibration characteristics of the wind power structures. There is a negative correlation between the modal frequency and the wind speed, and a positive correlation between the modal radial damping ratio and the wind speed. With the increase of the wind speed, the correlation coefficient increases slightly when the wind speed is greater than 7 m/s. The modal frequency shows a certain degree of degradation, and the degradation is mainly concentrated in the first 150 days of the test period, reflecting the decline in the constraint effects of the soil on the bucket foundation. The weakening of the foundation-soil contact effects is the main reason for the degradation of the modal frequency, and the corresponding explanation and discussion are made by the stiffness weakening effects of foundation-soil contact and the scouring effects.
  • [1]
    HÄCKELL M W, ROLFES R. Monitoring a 5MW offshore wind energy converter-condition parameters and triangulation based extraction of modal parameters[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 322-343. doi: 10.1016/j.ymssp.2013.04.004
    [2]
    ÁLAMO G M, AZNÁREZ J J, PADRÓN L A, et al. Dynamic soil-structure interaction in offshore wind turbines on monopiles in layered seabed based on real data[J]. Ocean Engineering, 2018, 156: 14-24. doi: 10.1016/j.oceaneng.2018.02.059
    [3]
    BASSETT K, CARRIVEAU R, TING D S K. Vibration analysis of 2.3 MW wind turbine operation using the discrete wavelet transform[J]. Wind Engineering, 2010, 34(4): 375-388. doi: 10.1260/0309-524X.34.4.375
    [4]
    WEIJTJENS W. Classifying resonant frequencies and damping values of an offshore wind turbine on a monopile foundation for different operational conditions[C]// European Wind Energy Association 2014, Barcelona, 2014.
    [5]
    蔡正银, 王清山, 关云飞, 等. 分舱板对海上风电复合筒型基础承载特性的影响研究[J]. 岩土工程学报, 2021, 43(4): 751-759. doi: 10.11779/CJGE202104018

    CAI Zhengyin, WANG Qingshan, GUAN Yunfei, et al. Influences of bulkheads on bearing characteristics of composite bucket foundation of offshore wind turbines[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 751-759. (in Chinese) doi: 10.11779/CJGE202104018
    [6]
    ZHU X, CHEN Z, GUAN Y F, et al. Field test on the mechanism of composite bucket foundation penetrating sandy silt overlying clay[J]. Ocean Engineering, 2023, 288: 116102. doi: 10.1016/j.oceaneng.2023.116102
    [7]
    练继建, 陈飞, 杨旭, 等. 海上风机复合筒型基础负压沉放调平[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 987-993.

    LIAN Jijian, CHEN Fei, YANG Xu, et al. Suction installation and leveling of composite bucket foundation for offshore wind turbines[J]. Journal of Tianjin University (Science and Technology), 2014, 47(11): 987-993. (in Chinese)
    [8]
    DING H Y, LIU Y G, ZHANG P Y, et al. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay[J]. Ocean Engineering, 2015, 103: 114-122. doi: 10.1016/j.oceaneng.2015.04.068
    [9]
    NORÉN-COSGRIFF K, KAYNIA A M. Estimation of natural frequencies and damping using dynamic field data from an offshore wind turbine[J]. Marine Structures, 2021, 76: 102915. doi: 10.1016/j.marstruc.2020.102915
    [10]
    熊春宝, 于丽娜, 常翔宇. 基于EEMD-小波阈值去噪的桥梁结构模态参数识别[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(4): 378-385.

    XIONG Chunbao, YU Lina, CHANG Xiangyu. Modal parameter identification of bridge structures based on EEMD-wavelet threshold denoising[J]. Journal of Tianjin University (Science and Technology), 2020, 53(4): 378-385. (in Chinese)
    [11]
    王茂华, 迟世春, 周雄雄. 基于地震记录和SSI方法的高土石坝模态识别[J]. 岩土工程学报, 2021, 43(7): 1279-1287. doi: 10.11779/CJGE202107013

    WANG Maohua, CHI Shichun, ZHOU Xiongxiong. Modal identification of high earth-rock dams based on seismic records and SSI method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1279-1287. (in Chinese) doi: 10.11779/CJGE202107013
    [12]
    夏栋舟, 何益斌, 刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. 岩土力学, 2009, 30(10): 2923-2928. doi: 10.3969/j.issn.1000-7598.2009.10.005

    XIA Dongzhou, HE Yibin, LIU Jianhua. Study of damping property and seismic action effect for soil-structure dynamic interaction system[J]. Rock and Soil Mechanics, 2009, 30(10): 2923-2928. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.10.005
    [13]
    顾永强, 冯锦飞, 张哲玮, 等. 基于模态参数的在役风力发电机叶片损伤识别研究[J]. 太阳能学报, 2022, 43(3): 350-355.

    GU Yongqiang, FENG Jinfei, ZHANG Zhewei, et al. Research on blade damage identification of active wind turbine based on modal parameters[J]. Acta Energiae Solaris Sinica, 2022, 43(3): 350-355. (in Chinese)
    [14]
    WHITE D J, BOLTON M D. Displacement and strain paths during plane-strain model pile installation in sand[J]. Géotechnique, 2004, 54(6): 375-397. doi: 10.1680/geot.2004.54.6.375
    [15]
    DEJONG J T, WHITE D J, RANDOLPH M F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry[J]. Soils and Foundations, 2006, 46(1): 15-28. doi: 10.3208/sandf.46.15
    [16]
    刘俊伟, 朱娜, 王立忠, 等. 循环荷载下砂与钢板界面的弱化机制[J]. 浙江大学学报(工学版), 2018, 52(6): 1123-1130.

    LIU Junwei, ZHU Na, WANG Lizhong, et al. Degenerate mechanism of sand-steel interface under cyclic loading[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1123-1130. (in Chinese)
    [17]
    PRENDERGAST L J, HESTER D, GAVIN K, et al. An investigation of the changes in the natural frequency of a pile affected by scour[J]. Journal of Sound and Vibration, 2013, 332(25): 6685-6702. doi: 10.1016/j.jsv.2013.08.020
    [18]
    马建军, 韩书娟, 高笑娟, 等. 层状土场中冲刷作用下部分埋置单桩动力响应分析[J]. 岩土力学, 2022, 43(6): 1705-1716.

    MA Jianjun, HAN Shujuan, GAO Xiaojuan, et al. Dynamic response analysis of the partially-embedded single pile affected by scour in layered soils[J]. Rock and Soil Mechanics, 2022, 43(6): 1705-1716. (in Chinese)
  • Related Articles

    [1]LIU Hongwei, WANG Mengqi, ZHAN Liangtong, FENG Song, WU Tao. Method and apparatus for measuring in-situ gas diffusion coefficient and permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(5): 948-958. DOI: 10.11779/CJGE20221228
    [2]JI Yong-xin, ZHANG Wen-jie. Experimental study on diffusion of chloride ions in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1755-1760. DOI: 10.11779/CJGE202109022
    [3]XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
    [4]HUANG Wei, LIU Qing-bing, XIANG Wei, ZHANG Yun-long, WANG Zhen-hua, DAO Minh Huan. Water adsorption characteristics and water retention model for montmorillonite modified by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 121-130. DOI: 10.11779/CJGE201901013
    [5]ZHANG Wen-jie, GU Chen, LOU Xiao-hong. Measurement of hydraulic conductivity and diffusion coefficient of backfill for soil-bentonite cutoff wall under low consolidation pressure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1915-1921. DOI: 10.11779/CJGE201710021
    [6]HUANG Qing-fu, ZHAN Mei-li, SHENG Jin-chang, LUO Yu-long, ZHANG Xia. Numerical method to generate granular assembly with any desired relative density based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 537-543. DOI: 10.11779/CJGE201503019
    [7]LIU Qing-bing, XIANG Wei, CUI De-shan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895.
    [8]LIU Qing-bing, XIANG Wei, CUI De-shan, CAO Li-jing. Mechanism of expansive soil improved by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 648.
    [9]Microcosmic mechanism of ion transport in charged clay soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1794-1799.
    [10]XI Yong, Hui, REN Jie. Laboratory determination of diffusion and distribution coefficients of contaminants in clay soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 397-402.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return